We study the behavior of families of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold when the Kahler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
Korea Inst Adv Study, Hoegiro 87, Seoul 130722, South KoreaUniv Saarland, Fachrichtung Math, Gebaude E2-4, D-66123 Saarbrucken, Germany
机构:
Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R ChinaFudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
Jiang, Chen
Wang, Long
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Meguro ku, Tokyo 1538914, JapanFudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China