Limits of Calabi-Yau metrics when the Kahler class degenerates

被引:46
|
作者
Tosatti, Valentino
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Morningside Ctr Math, Beijing, Peoples R China
关键词
Calabi-Yau manifolds; Ricci-flat metrics; degenerate complex Monge-Ampere equations; K3; SURFACES; RICCI FLOW; MANIFOLDS; CURVATURE; CONE; SINGULARITIES; CONJECTURE; CONSTANT; MODULI; MAP;
D O I
10.4171/JEMS/165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior of families of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold when the Kahler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.
引用
收藏
页码:755 / 776
页数:22
相关论文
共 50 条