Limits of Calabi-Yau metrics when the Kahler class degenerates

被引:47
作者
Tosatti, Valentino
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Morningside Ctr Math, Beijing, Peoples R China
关键词
Calabi-Yau manifolds; Ricci-flat metrics; degenerate complex Monge-Ampere equations; K3; SURFACES; RICCI FLOW; MANIFOLDS; CURVATURE; CONE; SINGULARITIES; CONJECTURE; CONSTANT; MODULI; MAP;
D O I
10.4171/JEMS/165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior of families of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold when the Kahler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.
引用
收藏
页码:755 / 776
页数:22
相关论文
共 60 条
[11]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[12]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[13]  
BERMAN R, ARXIV08031950V1
[14]  
CASCINI P, ARXIVMATH0603064
[15]   On the singularities of spaces with bounded Ricci curvature [J].
Cheeger, J ;
Colding, TH ;
Tian, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) :873-914
[16]  
CROKE CB, 1980, ANN SCI ECOLE NORM S, V13, P419
[17]  
Demailly J P., 1993, Complex Analysis and Geometry, P115, DOI DOI 10.1007/978-1-4757-9771-84
[18]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274
[19]  
DEMAILLY JP, 1993, COMPOS MATH, V89, P217
[20]  
DINEW S, ARXIV07113643V2