Limits of Calabi-Yau metrics when the Kahler class degenerates

被引:47
作者
Tosatti, Valentino
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Morningside Ctr Math, Beijing, Peoples R China
关键词
Calabi-Yau manifolds; Ricci-flat metrics; degenerate complex Monge-Ampere equations; K3; SURFACES; RICCI FLOW; MANIFOLDS; CURVATURE; CONE; SINGULARITIES; CONJECTURE; CONSTANT; MODULI; MAP;
D O I
10.4171/JEMS/165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior of families of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold when the Kahler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.
引用
收藏
页码:755 / 776
页数:22
相关论文
共 60 条
[1]  
Anderson MT., 1989, J. Am. Math. Soc, V2, P455, DOI [10.1090/S0894-0347-1989-0999661-1, DOI 10.1090/S0894-0347-1989-0999661-1, DOI 10.2307/1990939]
[2]  
[Anonymous], 1997, DMV SEMINAR
[3]  
[Anonymous], 1994, C P LECT NOTES GEOME
[4]  
[Anonymous], ARXIVMATH0603431
[5]  
[Anonymous], 1987, DMV SEMINAR
[6]  
AUBIN T., 1976, C R ACAD SCI PAR A B, V283, pAiii
[7]   CORRECTION AND ADDITION - BUBBLING OUT OF EINSTEIN MANIFOLDS [J].
BANDO, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (04) :587-588
[8]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[9]   BUBBLING OUT OF EINSTEIN MANIFOLDS [J].
BANDO, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (02) :205-216
[10]  
Barth W. P., 2004, COMPACT COMPLEX SURF, V4