The role of Fe particle size and oxide distribution on the hydrogenation properties of ball-milled nano-crystalline powder mixtures of Fe and Mg

被引:13
作者
Fadonougbo, Julien O. [1 ]
Jung, Jee Yun [1 ,2 ]
Suh, Jin-Yoo [1 ]
Lee, Young-Su [1 ]
Shim, Jae-Hyeok [1 ]
Fleury, Eric [3 ]
Cho, Young Whan [1 ]
机构
[1] Korea Inst Sci & Technol, Ctr Energy Mat Res, Seoul 02792, South Korea
[2] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[3] Univ Lorraine, CNRS UMR 7239, Lab Etud Microstruct & Mecan Mat, F-57000 Metz, France
基金
新加坡国家研究基金会;
关键词
Metal hydrides; Hydrogen storage; Thermal activation; Transmission electron microscopy; ENERGY IMPACT MODE; MECHANOCHEMICAL SYNTHESIS; STORAGE PROPERTIES; MG2FEH6; HYDRIDES; MAGNESIUM; NANOCRYSTALLINE; DECOMPOSITION; DIFFUSION; MG2NIH4;
D O I
10.1016/j.jallcom.2019.07.318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the aim of evidencing the relationship between Mg2FeH6 synthesis and the size of Fe particles, several specimens have been prepared by applying various milling energies (milling time) on a 2.1 Mg and 1Fe powder mixture doped with a small fraction of Unsaturated Fatty Amine (UFA). The resulting nanocrystalline composite structures display a broad Fe particle size distribution as a function of milling time. The hydrogenation of those complex powders has been conducted at temperatures lower than 400 degrees C under 60 bar of hydrogen pressure. As expected, the Fe particle size significantly influenced the hydrogenation kinetics. Also, the inevitable distribution of a minor fraction of oxides occurring during the milling process affected greatly the hydrogen storage capacity. Under the low pressure and temperature conditions selected in the frame of this study, lower than 100 bar and 500 degrees C conventionally used for synthesis of high purity Mg2FeH6, the hydrogenation reaction was demonstrated to be almost completed within 6 h, confirming the fast hydrogen absorption capability of the prepared materials. Plus, nearly 84 wt% of Mg2FeH6 was achieved under the afore mentioned moderate conditions and a minor fraction of unreacted Fe still remained due to diffusion constraints existing at low temperatures. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1039 / 1046
页数:8
相关论文
共 53 条
[1]   Synthesis and hydrogen sorption properties of Mg2FeH6-MgH2 nanocomposite prepared by reactive milling [J].
Asselli, A. A. C. ;
Leiva, D. R. ;
Jorge, A. M., Jr. ;
Ishikawa, T. T. ;
Botta, W. J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 536 :S250-S254
[2]   Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage [J].
Bogdanovic, B ;
Reiser, A ;
Schlichte, K ;
Spliethoff, B ;
Tesche, B .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 345 (1-2) :77-89
[3]   THE DEVELOPMENT, TESTING AND OPTIMIZATION OF ENERGY-STORAGE MATERIALS BASED ON THE MGH2-MG SYSTEM [J].
BOGDANOVIC, B ;
HARTWIG, TH ;
SPLIETHOFF, B .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1993, 18 (07) :575-589
[4]   Extremely Pure Mg2FeH6 as a Negative Electrode for Lithium Batteries [J].
Brutti, Sergio ;
Farina, Luca ;
Trequattrini, Francesco ;
Palumbo, Oriele ;
Reale, Priscilla ;
Silvestri, Laura ;
Panero, Stefania ;
Paolone, Annalisa .
ENERGIES, 2018, 11 (08)
[5]   Effect of the nature of the starting materials on the formation of Mg2FeH6 [J].
Castro, FJ ;
Gennari, FC .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 375 (1-2) :292-296
[6]   Hydrogen diffusion in Mg-H and Mg-Ni-H alloys [J].
Cermak, J. ;
Kral, L. .
ACTA MATERIALIA, 2008, 56 (12) :2677-2686
[7]   Hydrogen diffusion in Mg2NiH4 intermetallic compound [J].
Cermak, Jiri ;
Kral, Lubomir ;
David, Bohumil .
INTERMETALLICS, 2008, 16 (04) :508-517
[8]  
Assellí AAC, 2013, MATER RES-IBERO-AM J, V16, P1373, DOI [10.1590/S1516-14392013005000122, 10.1590/S1516-14392013000600023]
[9]   Reaction kinetic behaviour with relation to crystallite/grain size dependency in the Mg-Si-H system [J].
Chaudhary, Anna-Lisa ;
Sheppard, Drew A. ;
Paskevicius, Mark ;
Pistidda, Claudio ;
Dornheim, Martin ;
Buckley, Craig E. .
ACTA MATERIALIA, 2015, 95 :244-253
[10]   Formation of the Ternary Complex Hydride Mg2FeH6 from Magnesium Hydride (β-MgH2) and Iron: An Electron Microscopy and Energy-Loss Spectroscopy Study [J].
Danaie, Mohsen ;
Asselli, Alexandre Augusto Cesario ;
Huot, Jacques ;
Botton, Gianluigi A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (49) :25701-25714