In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts

被引:91
作者
Xu, Zhenzhu [1 ,2 ]
Liang, Zibin [1 ,2 ]
Guo, Wenhan [1 ,2 ]
Zou, Ruqiang [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Clean Energy, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
In situ/operando spectroscopy; Electrochemical energy conversion; Nanomaterials; ENHANCED RAMAN-SPECTROSCOPY; OXYGEN REDUCTION REACTION; REFLECTION-ABSORPTION SPECTROSCOPY; HYDROGEN EVOLUTION REACTION; ATR-FTIR SPECTROSCOPY; INFRARED-SPECTROSCOPY; CO2; REDUCTION; WATER OXIDATION; ACTIVE-SITES; ELECTROCHEMICAL REDUCTION;
D O I
10.1016/j.ccr.2021.213824
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Electrochemical energy conversion via electrocatalysis offers promising solutions to tackle problems of global energy crisis and environmental issues. The rational design of efficient electrocatalysts requires an in-depth understanding of the underlying mechanism and the structure-activity relationship of key electrocatalytic processes such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). To gain a comprehensive understanding of these electrochemical systems, in situ characterization techniques capable of determining catalyst states as well as important reaction intermediates under operando conditions are necessary. Vibrational spectroscopic methods, including Raman and FTIR-based techniques, are powerful tools to monitor surface transformation, active sites, and interfacial intermediates under reaction conditions. Here, recent developments of in situ/operando vibrational spectroscopic techniques in the probing of various electrochemical reactions and processes are described and summarized. The outlook for future research directions in this field is also discussed. The aim is to attract increasing attention of the wider community to in situ/operando characterization techniques and promote the fundamental understanding of reaction mechanisms and structure-activity relationships in electrocatalytic energy conversion systems. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 218 条
[1]  
Aljabour A., 2019, ACS CATAL, V10, P66, DOI DOI 10.1021/ACSCATAL.9B02872
[2]   Locally enhanced Raman spectroscopy with an atomic force microscope [J].
Anderson, MS .
APPLIED PHYSICS LETTERS, 2000, 76 (21) :3130-3132
[3]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[4]   Lateral Adsorbate Interactions Inhibit HCOO- while Promoting CO Selectivity for CO2 Electrocatalysis on Silver [J].
Bohra, Divya ;
Ledezma-Yanez, Isis ;
Li, Guanna ;
de Jong, Wiebren ;
Pidko, Evgeny A. ;
Smith, Wilson A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) :1345-1349
[5]   Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering [J].
Brummel, Olaf ;
Waidhas, Fabian ;
Khalakhan, Ivan ;
Vorokhta, Mykhailo ;
Dubau, Martin ;
Kovacs, Gabor ;
Aleksandrov, Hristiyan A. ;
Neyman, Konstantin M. ;
Matolin, Vladimir ;
Libuda, Joerg .
ELECTROCHIMICA ACTA, 2017, 251 :427-441
[6]   Photochemical Energy Storage and Electrochemically Triggered Energy Release in the Norbornadiene-Quadricyclane System: UV Photochemistry and IR Spectroelectrochemistry in a Combined Experiment [J].
Brummel, Olaf ;
Waidhas, Fabian ;
Bauer, Udo ;
Wu, Yanlin ;
Bochmann, Sebastian ;
Steinrueck, Hans-Peter ;
Papp, Christian ;
Bachmann, Julien ;
Libuda, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13) :2819-2825
[7]   Expanding applications of SERS through versatile nanomaterials engineering [J].
Cardinal, M. Fernanda ;
Ende, Emma Vander ;
Hackler, Ryan A. ;
McAnally, Michael O. ;
Stair, Peter C. ;
Schatz, George C. ;
Van Duyne, Richard P. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :3886-3903
[8]   Ag@MoS2 Core-Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2 [J].
Chen, Junze ;
Liu, Guigao ;
Zhu, Yue-zhou ;
Su, Min ;
Yin, Pengfei ;
Wu, Xue-jun ;
Lu, Qipeng ;
Tan, Chaoliang ;
Zhao, Meiting ;
Liu, Zhengqing ;
Yang, Weimin ;
Li, Hai ;
Nam, Gwang-Hyeon ;
Zhang, Liping ;
Chen, Zhenhua ;
Huang, Xiao ;
Radjenovic, Petar M. ;
Huang, Wei ;
Tian, Zhong-qun ;
Li, Jian-feng ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :7161-7167
[9]   RuII Photosensitizer-Functionalized Two-Dimensional MoS2 for Light-Driven Hydrogen Evolution [J].
Chen, Xin ;
McAteer, David ;
McGuinness, Cormac ;
Godwin, Ian ;
Coleman, Jonathan N. ;
McDonald, Aidan R. .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (02) :351-355
[10]   Controlling Speciation during CO2 Reduction on Cu-Alloy Electrodes [J].
Chen, Xinyi ;
Henckel, Danielle A. ;
Nwabara, Uzoma O. ;
Li, Yuanyuan ;
Frenkel, Anatoly I. ;
Fister, Tim T. ;
Kenis, Paul J. A. ;
Gewirth, Andrew A. .
ACS CATALYSIS, 2020, 10 (01) :672-682