Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array

被引:36
作者
Blacksberg, Jordana [1 ]
Alerstam, Erik [1 ]
Maruyama, Yuki [1 ]
Cochrane, Corey J. [1 ]
Rossman, George R. [2 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
基金
美国国家航空航天局;
关键词
IN-SITU; MERIDIANI-PLANUM; HYDRATION STATES; SPECTROSCOPY; MARS; FLUORESCENCE; SULFATES; REJECTION; MINERALS; CLAYS;
D O I
10.1364/AO.55.000739
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.
引用
收藏
页码:739 / 748
页数:10
相关论文
共 60 条
[1]   The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: Implications for extra-terrestrial detection of polyaromatic hydrocarbons [J].
Alajtal, A. I. ;
Edwards, H. G. M. ;
Elbagerma, M. A. ;
Scowen, I. J. .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2010, 76 (01) :1-5
[2]   Application of FT-Raman spectroscopy to quality control in brick clays firing process [J].
Alia, JM ;
Edwards, HGM ;
Garcia-Navarro, FJ ;
Parras-Armenteros, J ;
Sanchez-Jimenez, CJ .
TALANTA, 1999, 50 (02) :291-298
[3]   Remote Raman Spectroscopy for Planetary Exploration: A Review [J].
Angel, S. Michael ;
Gomer, Nathaniel R. ;
Sharma, Shiv K. ;
Mckay, Chris .
APPLIED SPECTROSCOPY, 2012, 66 (02) :137-150
[4]   UV RAMAN EXCITATION PROFILES OF IMIDAZOLE, IMIDAZOLIUM, AND WATER [J].
ASHER, SA ;
MURTAUGH, JL .
APPLIED SPECTROSCOPY, 1988, 42 (01) :83-90
[5]  
Beegle L., 2014, P 11 INT GEORAMAN C
[6]   26 ps pulses from a passively Q-switched microchip laser [J].
Bernard, Benjamin ;
Mehner, Eva ;
Kopf, Daniel ;
Giessen, Harald ;
Braun, Bernd .
LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XVI, 2014, 8960
[7]   Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite [J].
Bishop, JL ;
Murad, E .
JOURNAL OF RAMAN SPECTROSCOPY, 2004, 35 (06) :480-486
[8]  
Blacksberg J., 2015, LUNAR PLANETARY SCI
[9]   Fast single-photon avalanche diode arrays for laser Raman spectroscopy [J].
Blacksberg, Jordana ;
Maruyama, Yuki ;
Charbon, Edoardo ;
Rossman, George R. .
OPTICS LETTERS, 2011, 36 (18) :3672-3674
[10]   Time-resolved Raman spectroscopy for in situ planetary mineralogy [J].
Blacksberg, Jordana ;
Rossman, George R. ;
Gleckler, Anthony .
APPLIED OPTICS, 2010, 49 (26) :4951-4962