Bubble dynamic evolution, material strengthening and chemical effect induced by laser cavitation peening

被引:30
作者
Gu, Jiayang [1 ]
Luo, Chunhui [1 ]
Lu, Zhubi [1 ]
Ma, Pingchuan [1 ]
Xu, Xinchao [1 ]
Ren, Xudong [1 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser cavitation peening; Bubble dynamic characteristic; Material strengthening; Chemical effect;
D O I
10.1016/j.ultsonch.2020.105441
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The mechanism of laser cavitation peening (LCP) including laser shock wave, bubble collapse shock wave, and water-jet was investigated at various stand-off distances (gamma) combined with experiment and simulation. The dynamic characteristics, pressure field, and temperature field of cavitation bubble were investigated. The Q235 steel was impacted by LCP and the strengthening mechanism was analyzed, and the chemical effect in LCP was discussed. The results found that the pressure intensity of shock wave and water-jet decreases with increasing the gamma. At gamma = 0, the laser shock wave, bubble collapse shock wave, and water-jet are 989 Mpa, 763 Mpa, and 369 Mpa respectively. The pressure and temperature of the bubble decrease obviously in the second and third pulsations. The impact of LCP causes plastic deformation on the Q235 steel surface and refines the grains on the surface layer within a depth of 20-30 mu m. The enhancement of microhardness and the residual stress increases with the increase of gamma, and the optimal value for LCPwc is 0.4. The degradation rate of MB solution in the infinite domain, LCPwc, and LCP is 26.4%, 41.7%, and 34.5%.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Study of J/ψ decaying into ωp(p)over-bar [J].
Ablikim, M. ;
Bai, J. Z. ;
Ban, Y. ;
Cai, X. ;
Chen, H. F. ;
Chen, H. S. ;
Chen, H. X. ;
Chen, J. C. ;
Chen, Jin ;
Chen, Y. B. ;
Chu, Y. P. ;
Dai, Y. S. ;
Diao, L. Y. ;
Deng, Z. Y. ;
Dong, Q. F. ;
Du, S. X. ;
Fang, J. ;
Fang, S. S. ;
Fu, C. D. ;
Gao, C. S. ;
Gao, Y. N. ;
Gu, S. D. ;
Gu, Y. T. ;
Guo, Y. N. ;
Guo, Z. J. ;
Harris, F. A. ;
He, K. L. ;
He, M. ;
Heng, Y. K. ;
Hou, J. ;
Hu, H. M. ;
Hu, J. H. ;
Hu, T. ;
Huang, G. S. ;
Huang, X. T. ;
Ji, X. B. ;
Jiang, X. S. ;
Jiang, X. Y. ;
Jiao, J. B. ;
Jin, D. P. ;
Jin, S. ;
Lai, Y. F. ;
Li, G. ;
Li, H. B. ;
Li, J. ;
Li, R. Y. ;
Li, S. M. ;
Li, W. D. ;
Li, W. G. ;
Li, X. L. .
EUROPEAN PHYSICAL JOURNAL C, 2008, 53 (01) :15-20
[2]   On the pressure of cavitation bubbles [J].
Brujan, E. A. ;
Ikeda, T. ;
Matsumoto, Y. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2008, 32 (05) :1188-1191
[3]   Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound [J].
Brujan, EA ;
Ikeda, T ;
Matsumoto, Y .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (20) :4797-4809
[4]  
Brujan EA, 1996, ACUSTICA, V82, P423
[5]   Dynamics of laser-induced cavitation bubbles near an elastic boundary [J].
Brujan, EA ;
Nahen, K ;
Schmidt, P ;
Vogel, A .
JOURNAL OF FLUID MECHANICS, 2001, 433 :251-281
[6]   Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom [J].
Brujan, Emil-Alexandru ;
Vogel, Alfred .
JOURNAL OF FLUID MECHANICS, 2006, 558 (281-308) :281-308
[7]   Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions [J].
Brujan, Emil-Alexandru .
ULTRASONICS SONOCHEMISTRY, 2019, 58
[8]   Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process [J].
Cai, Meiqiang ;
Su, Jie ;
Zhu, Yizu ;
Wei, Xiaoqing ;
Jin, Micong ;
Zhang, Haojie ;
Dong, Chunying ;
Wei, Zongsu .
ULTRASONICS SONOCHEMISTRY, 2016, 28 :302-310
[9]   Modeling of surface cleaning by cavitation bubble dynamics and collapse [J].
Chahine, Georges L. ;
Kapahi, Anil ;
Choi, Jin-Keun ;
Hsiao, Chao-Tsung .
ULTRASONICS SONOCHEMISTRY, 2016, 29 :528-549
[10]   Optical investigation of cavitation erosion by laser-induced bubble collapse [J].
Chen, X ;
Xu, RQ ;
Shen, ZH ;
Lu, J ;
Ni, XW .
OPTICS AND LASER TECHNOLOGY, 2004, 36 (03) :197-203