CVD of Conducting Ultrathin Copper Films

被引:12
作者
Bahlawane, Naoufal [1 ]
Premkumar, Peter Antony [1 ]
Reilmann, Frank [1 ]
Kohse-Hoeinghaus, Katharina [1 ]
Wang, Jing [2 ]
Qi, Fei [2 ]
Gehl, Bernhard [3 ]
Baeumer, Markus [3 ]
机构
[1] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany
[2] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[3] Univ Bremen, Inst Appl & Phys Chem, D-28334 Bremen, Germany
关键词
CHEMICAL-VAPOR-DEPOSITION; ATOMIC LAYER DEPOSITION; CONFORMAL COPPER; METAL-FILMS; GROWTH; ALCOHOLS; MOCVD;
D O I
10.1149/1.3205478
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Miniaturization of electronic devices imposes challenges in terms of materials and production methods, and advances in the chemical vapor deposition (CVD) of metals are a key prerequisite toward reliable interconnects that are essential for their functionality. Electrically conducting ultrathin films of pure copper were grown on glass and silicon substrates starting at a temperature of 195 degrees C. The growth kinetics does not exhibit any measurable nucleation time enabling early stage coalescence and high electrical conductivity. In situ monitoring of the CVD process using synchrotron-based mass spectrometry shows that the enhanced dehydrogenation of alcohols by copper(II) acetylacetonate precursor drives the Cu-0 deposition, which is kinetically favorable already at low temperature. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3205478] All rights reserved.
引用
收藏
页码:D452 / D455
页数:4
相关论文
共 29 条
[1]   A study of copper films obtained from the nebulized spray pyrolysis of different precursors [J].
Aiyer, HN ;
Parashar, S ;
Raju, AR ;
Shivashankar, SA ;
Rao, CNR .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (01) :1-8
[2]   Self-catalyzed chemical vapor deposition method for the growth of device-quality metal thin films [J].
Bahlawane, N. ;
Premkumar, P. Antony ;
Onwuka, K. ;
Reiss, G. ;
Kohse-Hoeinghaus, K. .
MICROELECTRONIC ENGINEERING, 2007, 84 (11) :2481-2485
[3]   Catalytically enhanced H2-free CVD of transition metals using commercially available precursors [J].
Bahlawane, N. ;
Premkumar, P. Antony ;
Onwuka, K. ;
Rott, K. ;
Reiss, G. ;
Kohse-Hoeinghaus, K. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (22-23) :8914-8918
[4]   Copper nanoparticles and organometallic chemical liquid deposition (OMCLD) for substrate metallization [J].
Barriere, Clement ;
Alcaraz, Gilles ;
Margeat, Olivier ;
Fau, Pierre ;
Quoirin, Jean Baptiste ;
Anceau, Christine ;
Chaudret, Bruno .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (26) :3084-3086
[5]   Deposition of conformal copper and nickel films from supercritical carbon dioxide [J].
Blackburn, JM ;
Long, DP ;
Cabañas, A ;
Watkins, JJ .
SCIENCE, 2001, 294 (5540) :141-145
[6]   Conformal copper deposition in deep trenches [J].
Bollmann, D ;
Merkel, R ;
Klumpp, A .
MICROELECTRONIC ENGINEERING, 1997, 37-8 (1-4) :105-110
[7]   Solution delivery of Cu(hfac)2 for alcohol-assisted chemical vapor deposition of copper [J].
Borgharkar, NS ;
Griffin, GL ;
Fan, H ;
Maverick, AW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :1041-1045
[8]   Alcohol-assisted growth of copper CVD films [J].
Borgharkar, NS ;
Griffin, GL ;
James, A ;
Maverick, AW .
THIN SOLID FILMS, 1998, 320 (01) :86-94
[9]   Alcohol-assisted deposition of copper films from supercritical carbon dioxide [J].
Cabañas, A ;
Shan, XY ;
Watkins, JJ .
CHEMISTRY OF MATERIALS, 2003, 15 (15) :2910-2916
[10]   ROLE OF SOLVENTS IN CHEMICAL-VAPOR-DEPOSITION - IMPLICATIONS FOR COPPER THIN-FILM GROWTH [J].
CHIANG, CM ;
MILLER, TM ;
DUBOIS, LH .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (45) :11781-11786