Characterization of semiconductor heterostructures by acousto-optical perturbation technique

被引:3
|
作者
Ostrovskii, IV
Korotchenkov, OA
Burbelo, RM
Walther, HG
机构
[1] Taras Shevchenko Kiev Univ, Fac Phys, UA-252022 Kiev, Ukraine
[2] Univ Jena, Inst Opt & Quantum Elect, D-07743 Jena, Germany
关键词
heterostructures; interfaces; acoustic waves; optical spectra; imaging;
D O I
10.1016/S0921-5107(00)00429-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new technique is developed for investigating defects at substrate/layer semiconductor interface. Acoustic waves (AW) are used to induce changes in the spectral dependence of the optical reflectance and transmission of semiconductor heterostructures together with photoacoustic (PA) and photoelectric (PE) imagings of the layers. The method is illustrated with experiments performed on n-type doped GaAs MBE layers of different quality (unintentionally doping and Si or Te controlled doping). The spectral peaks observed at about 37 and 29 meV inside the band gap are attributed to energy levels of Si and Te impurities, respectively. Two peaks ranged from 54 to 67 and 80-90 meV below the band gap in different samples are suggested to be due to two energy levels of As-vacancy related defects localized at the interface and influenced by electric fields and mechanical stresses in the boundary region. The exact energy position of these peaks is interpreted to be indicative of the interface quality. PA and PE imagings are employed to qualitatively determine electric charge conditions of the interface. It is demonstrated that the nonunifornity of the PE image increases for lower quality substrate/layer interface. Direct evidence is found that relates the interface charge to the spectral peak position of the As-vacancy related defect in acoustically perturbed reflectance spectra. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Acousto-optical characterization of shallow states in GaAs:Te heterostructures
    Ostrovskii, IV
    Torres-Cisneros, M
    2000 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2000, : 647 - 650
  • [2] Fabrication and characterization of an ultrasensitive acousto-optical cantilever
    Sievila, P.
    Rytkonen, V-P
    Hahtela, O.
    Chekurov, N.
    Kauppinen, J.
    Tittonen, I.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) : 852 - 859
  • [3] Acousto-optical characterization of fibers: New results
    Dion, J.-L.
    Brodeur, P.
    Garceau, J.J.
    Chen, R.
    Journal of Pulp and Paper Science, 1988, 14 (06): : 141 - 144
  • [4] Acousto-optical elastography
    Kirkpatrick, SJ
    Duncan, DD
    LASER-TISSUE INTERACTION XII: PHOTOCHEMICAL, PHOTOTHERMAL, AND PHOTOMECHANICAL, 2001, 4257 : 426 - 432
  • [5] New Acousto-Optical Process for Characterization of Pulps.
    Dion, J.-L.
    Garceau, J.J.
    Morissette, J.-C.
    Pulp and Paper Canada, 1987, 88 (03): : 87 - 90
  • [6] Parametric Interaction in Acousto-Optical Semiconductor Plasmas in the Presence of Hot Carriers
    Nimje, Nilesh
    Dubey, Swati
    Ghosh, S.
    CHINESE JOURNAL OF PHYSICS, 2011, 49 (04) : 901 - 916
  • [7] Acousto-optical properties of metamaterials
    Pustovoit, V. I.
    QUANTUM ELECTRONICS, 2016, 46 (02) : 155 - 158
  • [8] NDT BY ACOUSTO-OPTICAL IMAGING
    APRAHAMI.R
    BHUTA, PG
    MATERIALS EVALUATION, 1970, 28 (09) : A34 - &
  • [9] Coaxial acousto-optical tomography
    Yao, Y
    Xing, D
    Ueda, K
    BIOPHOTONICS INSTRUMENTATION AND ANALYSIS, 2001, 4597 : 59 - 64
  • [10] Acousto-optical alcohol meters
    N. A. Askerov
    V. N. Zhogun
    Z. A. Magomedov
    Measurement Techniques, 2009, 52 : 884 - 889