On the convolution of inverse Gaussian and exponential random variables

被引:18
作者
Schwarz, W [1 ]
机构
[1] Univ Nijmegen, NICI, NL-6500 HE Nijmegen, Netherlands
关键词
inverse Gaussian distribution; exponential distribution; convolution; complex error function; Wiener diffusion process;
D O I
10.1081/STA-120017215
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the open problem of convolving the first-passage time of a Wiener diffusion process with drift It and variance parameter or 2 with an independent exponential random variable with rate X. We show that if lambda is larger than mu(2)/(2sigma(2)) then the convolution density may be represented using the real and complex parts of the complex error function. Potential applications are briefly mentioned.
引用
收藏
页码:2113 / 2121
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]  
[Anonymous], 1993, The Inverse Gaussian Distribution: A Case Study in Exponential Families"
[3]  
[Anonymous], 1978, PHOTOELECTRON STAT
[4]  
[Anonymous], 1986, RESPONSE TIMES
[5]  
Chhikara R. S., 1989, INVERSE GAUSSIAN DIS
[6]  
Cox DR., 1965, The Theory of Stochastic Proceesses, DOI DOI 10.1016/J.PHYSA.2011
[7]  
Henrici P., 1977, Special FunctionsIntegral Transforms-Asymptotics-Continued Fractions, V2
[8]  
JOHNSON NL, 1994, CONTINUOUS UNIVARIAT, V1, pCH15
[9]   THE WIENER PROCESS BETWEEN A REFLECTING AND AN ABSORBING BARRIER [J].
SCHWARZ, W .
JOURNAL OF APPLIED PROBABILITY, 1992, 29 (03) :597-604
[10]  
ZHANG S, 1996, COMPUTATION SPECIAL, pCH16