Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems

被引:21
作者
Wu, Dong-Lun [1 ]
Wu, Xing-Ping [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Homoclinic solutions; (C) condition; Mountain Pass theorem; Second-order Hamiltonian systems; Sobolev's embedding theorem; ORBITS; EXISTENCE;
D O I
10.1016/j.jmaa.2009.12.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of homoclinic solutions is obtained for second-order Hamiltonian systems -u(t) + L(t)u(t) = del W(t, u(t)) - f(t), as the limit of the solutions of a sequence of nil-boundary-value problems which are obtained by the Mountain Pass theorem, when L(t) and W(t, x) are neither periodic nor even with respect to t. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 166
页数:13
相关论文
共 14 条
[1]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[2]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[3]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[4]  
Felmer PL., 1998, ANN SC NORM SUPER S, V26, P285
[5]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[6]   Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential [J].
Izydorek, Marek ;
Janczewska, Joanna .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1119-1127
[7]   Existence of even homoclinic orbits for second-order Hamiltonian systems [J].
Lv, Ying ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (07) :2189-2198
[8]   Existence of homoclinic solution for the second order Hamiltonian systems [J].
Ou, ZQ ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :203-213
[9]   Multiple homoclinic orbits for a class of Hamiltonian systems [J].
Paturel, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (02) :117-143
[10]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38