ARITHMETIC PROPERTIES OF (k,l)-REGULAR BIPARTITIONS

被引:22
作者
Wang, Liuquan [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
关键词
partitions; congruences; (k; l)-regular bipartitions; modular forms; REGULAR PARTITION-FUNCTIONS; DISTINCT PARTS; DIVISIBILITY; NUMBER;
D O I
10.1017/S0004972716000964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-k,B-l(n) denote the number of (k,l)-regular bipartitions of n. Employing both the theory of modular forms and some elementary methods, we systematically study the arithmetic properties of B-3,B-l (n) and B-5,B-l (n). In particular, we confirm all the conjectures proposed by Dou
引用
收藏
页码:353 / 364
页数:12
相关论文
共 23 条
[1]   Arithmetic properties of partitions with even parts distinct [J].
Andrews, George E. ;
Hirschhorn, Michael D. ;
Sellers, James A. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :169-181
[2]  
Berndt B.C., 2006, Number Theory in the Spirit of Ramanujan
[3]  
Calkin N., 2008, Integers, V8, pA60
[4]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[5]   a""-Divisibility of a""-regular partition functions [J].
Dandurand, Brian ;
Penniston, David .
RAMANUJAN JOURNAL, 2009, 19 (01) :63-70
[6]   Congruences for (3,11)-regular bipartitions modulo 11 [J].
Dou, Donna Q. J. .
RAMANUJAN JOURNAL, 2016, 40 (03) :535-540
[7]   Congruences for l-regular partition functions modulo 3 [J].
Furcy, David ;
Penniston, David .
RAMANUJAN JOURNAL, 2012, 27 (01) :101-108
[8]  
Gasper G., 2004, BASIC HYPERGEOMETRIC, V35
[9]  
Gordon B., 1997, RAMANUJAN J, V1, P25, DOI DOI 10.1023/A:1009711020492
[10]   ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS [J].
Hirschhorn, Michael D. ;
Sellers, James A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) :58-63