Hyperbolic entire functions with bounded Fatou components

被引:24
作者
Bergweiler, Walter [1 ]
Fagella, Nuria [2 ]
Rempe-Gillen, Lasse [3 ]
机构
[1] Univ Kiel, Math Seminar, Olshaussenstr 40, D-24098 Kiel, Germany
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
关键词
Fatou set; Julia set; transcendental entire function; hyperbolicity; Axiom A; bounded Fatou component; quasidisc; quasicircle; Jordan curve; local connectivity; Laguerre-Polya class; Eremenko-Lyubich class; DYNAMIC RAYS; ITERATION; DIMENSION; DENSITY;
D O I
10.4171/CMH/371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an invariant Fatou component of a hyperbolic transcendental entire function is a Jordan domain (in fact, a quasidisc) if and only if it contains only finitely many critical points and no asymptotic curves. We use this theorem to prove criteria for the boundedness of Fatou components and local connectivity of Julia sets for hyperbolic entire functions, and give examples that demonstrate that our results are optimal. A particularly strong dichotomy is obtained in the case of a function with precisely two critical values.
引用
收藏
页码:799 / 829
页数:31
相关论文
共 57 条
  • [1] Aarts Jan M., 1993, T AM MATH SOC, V338, P897
  • [2] Ahlfors Lars V., 1978, INT SERIES PURE APPL
  • [3] [Anonymous], COMPUT METHODS FUNCT
  • [4] Baker I.N., 2000, COMPLEX VARIABLES TH, V41, P371
  • [5] BAKER IN, 1984, ANN ACAD SCI FENN-M, V9, P49
  • [6] Baker IN, 1999, ANN ACAD SCI FENN-M, V24, P437
  • [7] Beardon A. F., 2007, Quasiconformal mappings and their applications, P9
  • [8] Semihyperbolic entire functions
    Bergweiler, W
    Morosawa, S
    [J]. NONLINEARITY, 2002, 15 (05) : 1673 - 1684
  • [9] ITERATION OF MEROMORPHIC FUNCTIONS
    BERGWEILER, W
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) : 151 - 188
  • [10] Tying hairs for structurally stable exponentials
    Bhattacharjee, R
    Devaney, RL
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1603 - 1617