共 70 条
Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs
被引:46
作者:
Trahan, Christian
Martel, Caroline
Dragon, Francois
[1
]
机构:
[1] Univ Quebec, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada
关键词:
HUMAN TELOMERASE RNA;
PSEUDOURIDYLATION GUIDE RNA;
SMALL NUCLEOLAR RNPS;
SECONDARY STRUCTURE;
CRYSTAL-STRUCTURE;
U2;
SNRNA;
PROTEIN;
COMPLEX;
BIOGENESIS;
SNORNA;
D O I:
10.1093/hmg/ddp551
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Dyskeratosis congenita (DC) is a rare genetic syndrome that gives rise to a variety of disorders in affected individuals. Remarkably, all causative gene mutations identified to date share a link to telomere/telomerase biology. We found that the most prevalent dyskerin mutation in DC (A353V) did not affect formation of the NAF1-dyskerin-NOP10-NHP2 tetramer that normally assembles with nascent H/ACA RNAs in vivo. However, the A353V mutation slightly reduced pre-RNP assembly with the H/ACA-like domain of human telomerase RNA (hTR). In contrast, NHP2 mutations V126M and Y139H impaired association with NOP10, leading to major pre-RNP assembly defects with all H/ACA RNAs tested, including the H/ACA domain of hTR. Mutation R34W in NOP10 caused no apparent defect in protein tetramer formation, but it severely affected pre-RNP assembly with the H/ACA domain of hTR and a subset of H/ACA RNAs. Surprisingly, H/ACA sno/scaRNAs that encode miRNAs were not affected by the mutation R34W, and they were able to form pre-RNPs with NOP10-R34W. This indicates structural differences between H/ACA RNPs that encode miRNAs and those that do not. Altogether, our results suggest that, in addition to major defects in the telomere/telomerase pathways, some of the disorders occurring in DC may be caused by alteration of most H/ACA RNPs, or by only a subset of them.
引用
收藏
页码:825 / 836
页数:12
相关论文