Kinetic Monte Carlo simulation of strained heteroepitaxial growth with intermixing

被引:32
作者
Baskaran, Arvind [1 ]
Devita, Jason [2 ]
Smereka, Peter [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
Heteroepitaxy; Strained; Intermixing; Kinetic; Monte Carlo; Self-assembly; EPITAXIAL-GROWTH; EVOLUTION; COMPUTATION; INSTABILITY; MODEL;
D O I
10.1007/s00161-009-0118-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
An efficient method for the simulation of strained heteroepitaxial growth with intermixing using kinetic Monte Carlo is presented. The model used is based on a solid-on-solid bond counting formulation in which elastic effects are incorporated using a ball and spring model. While idealized, this model nevertheless captures many aspects of heteroepitaxial growth, including nucleation, surface diffusion, and long-range effects due to elastic interaction. The algorithm combines a fast evaluation of the elastic displacement field with an efficient implementation of a rejection-reduced kinetic Monte Carlo based on using upper bounds for the rates. The former is achieved by using a multigrid method for global updates of the displacement field and an expanding box method for local updates. The simulations show the importance of intermixing on the growth of a strained film. Further, the method is used to simulate the growth of self-assembled stacked quantum dots.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 27 条
[1]   INTERFACE MORPHOLOGY DEVELOPMENT DURING STRESS-CORROSION CRACKING .1. VIA SURFACE DIFFUSION [J].
ASARO, RJ ;
TILLER, WA .
METALLURGICAL TRANSACTIONS, 1972, 3 (07) :1789-&
[2]  
BLUE JL, 1995, PHYS REV E, V51, P867
[3]  
BRIGGS MWL, 1987, MULTIGRID TUTORIAL
[4]   An application of multigrid methods for a discrete elastic model for epitaxial systems [J].
Caflisch, R. E. ;
Lee, Y. -J. ;
Shu, S. ;
Xiao, Y. -X. ;
Xu, J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) :697-714
[5]   Stranski-Krastanow transition and epitaxial island growth [J].
Cullis, AG ;
Norris, DJ ;
Walther, T ;
Migliorato, MA ;
Hopkinson, M .
PHYSICAL REVIEW B, 2002, 66 (08) :1-4
[6]   THE STRESS DRIVEN INSTABILITY IN ELASTIC CRYSTALS - MATHEMATICAL-MODELS AND PHYSICAL MANIFESTATIONS [J].
GRINFELD, MA .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :35-83
[7]   Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study [J].
Lam, CH ;
Lee, CK ;
Sander, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (21) :216102-216102
[8]   Exact artificial boundary conditions for continuum and discrete elasticity [J].
Lee, Sunmi ;
Caflisch, Russel E. ;
Lee, Young-Ju .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (05) :1749-1775
[9]   Nanometer-scale studies of vertical organization and evolution of stacked self-assembled InAs/GaAs quantum dots [J].
Lita, B ;
Goldman, RS ;
Phillips, JD ;
Bhattacharya, PK .
APPLIED PHYSICS LETTERS, 1999, 74 (19) :2824-2826
[10]  
Millunchick JM, 1997, APPL PHYS LETT, V70, P1402, DOI 10.1063/1.118589