A PARAMETER-SELF-ADJUSTING LEVENBERG-MARQUARDT METHOD FOR SOLVING NONSMOOTH EQUATIONS

被引:7
作者
Qi, Liyan [1 ,2 ]
Xiao, Xiantao [1 ]
Zhang, Liwei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Ocean Univ, Sch Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Levenberg-Marquardt method; Nonsmooth equations; Nonlinear complementarity problems; NONLINEAR EQUATIONS; NEWTON METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.4208/jcm.1512-m2015-0333
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parameter-self-adjusting Levenberg-Marquardt method (PSA-LMM) is proposed for solving a nonlinear system of equations F (x) = 0, where F : R-n -> Rn is a semismooth mapping. At each iteration, the LM parameter mu k is automatically adjusted based on the ratio between actual reduction and predicted reduction. The global convergence of PSA-LMM for solving semismooth equations is demonstrated. Under the BD-regular condition, we prove that PSA-LMM is locally superlinearly convergent for semismooth equations and locally quadratically convergent for strongly semismooth equations. Numerical results for solving nonlinear complementarity problems are presented.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 19 条
[1]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[2]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[3]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512
[4]  
Facchinei F., 2003, SPRINGER SERIES OPER, VII
[5]  
FACCHINEI F, 2003, SPRINGER SERIES OPER, V1
[6]   Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition [J].
Fan, JY ;
Pan, JY .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (01) :47-62
[7]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[8]  
Fan JY, 2003, J COMPUT MATH, V21, P625
[9]  
Levenberg K., 1944, Quarterly of Applied Mathematics, V2, P164, DOI [DOI 10.1090/QAM/10666, 10.1090/QAM/10666]
[10]   INEXACT TRUST REGION METHOD FOR LARGE SPARSE SYSTEMS OF NONLINEAR EQUATIONS [J].
LUKSAN, L .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 81 (03) :569-590