On the Form of Dispersive Shock Waves of the Korteweg-de Vries Equation

被引:0
|
作者
Egorova, I. [1 ]
Gladka, Z. [1 ]
Teschl, G. [2 ,3 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
KdV equation; steplike; dispersive shock wave; LONG-TIME ASYMPTOTICS; INITIAL DATA; STEP; POTENTIALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the long-time behavior of solutions to the Korteweg de Vries shock problem can be described as a slowly modulated one-gap solution in the dispersive shock region. The modulus of the elliptic function (i.e., the spectrum of the underlying Schrodinger operator) depends only on the size of the step of the initial data and on the direction, x/t =const, along which we determine the asymptotic behavior of the solution. In turn, the phase shift (i.e., the Dirichlet spectrum) in this elliptic function depends also on the scattering data, and is computed explicitly via the Jacobi inversion problem.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 50 条
  • [1] Interactions and asymptotics of dispersive shock waves Korteweg-de Vries equation
    Ablowitz, Mark J.
    Baldwin, Douglas E.
    PHYSICS LETTERS A, 2013, 377 (07) : 555 - 559
  • [2] Whitham shocks and resonant dispersive shock waves governed by the higher order Korteweg-de Vries equation
    Baqer, Saleh
    Smyth, Noel F. F.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2269):
  • [3] DISPERSIVE SCHEMES FOR THE CRITICAL KORTEWEG-DE VRIES EQUATION
    Audiard, Corentin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14): : 2603 - 2646
  • [4] Evolution of dispersive shock waves to the complex modified Korteweg-de Vries equation with higher-order effects
    Bai, Qian
    Li, Xinyue
    Zhao, Qiulan
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [5] SHOCK-WAVES IN THE MODIFIED KORTEWEG-DE VRIES-BURGERS EQUATION
    BIKBAEV, RF
    JOURNAL OF NONLINEAR SCIENCE, 1995, 5 (01) : 1 - 10
  • [6] A universal form for the emergence of the Korteweg-de Vries equation
    Bridges, Thomas J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153):
  • [7] WEAK NONLINEAR DISPERSIVE WAVES - DISCUSSION CENTERED AROUND KORTEWEG-DE VRIES EQUATION
    JEFFREY, A
    KAKUTANI, T
    SIAM REVIEW, 1972, 14 (04) : 582 - +
  • [8] KORTEWEG-DE VRIES EQUATION FOR NONLINEAR DRIFT WAVES
    TODOROKI, J
    SANUKI, H
    PHYSICS LETTERS A, 1974, A 48 (04) : 277 - 278
  • [9] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [10] Dispersive Hydrodynamics of Soliton Condensates for the Korteweg-de Vries Equation
    Congy, T.
    El, G. A.
    Roberti, G.
    Tovbis, A.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (06)