Quasi-steady state chemical exchange saturation transfer (QUASS CEST) analysis-correction of the finite relaxation delay and saturation time for robust CEST measurement

被引:39
作者
Sun, Phillip Zhe [1 ,2 ]
机构
[1] Emory Univ, Yerkes Imaging Ctr, Yerkes Natl Primate Res Ctr, 954 Gatewood Rd NE, Atlanta, GA 30329 USA
[2] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
chemical exchange saturation transfer; CEST; QUAsi-Steady State CEST; QUASS CEST;
D O I
10.1002/mrm.28653
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: CEST provides a MR contrast mechanism sensitizing to the exchange between dilute labile and bulk water protons. However, the CEST effect depends on the RF saturation duration and relaxation delay, which need to be long to reach its steady state. Our study aims to estimate the QUAsi-Steady State (QUASS) CEST signal from experiments with shorter saturation and relaxation delay times. Methods: The evolution of the CEST signal was modeled as a function of the bulk water longitudinal relaxation rate during the relaxation delay (Td) and spin-lock relaxation rate during the RF saturation (Ts), from which the QUASS CEST effect is solved. Numeric simulations were programmed to compare the apparent CEST and QUASS CEST effects as a function of Ts and Td times. We also performed CEST MRI experiments from a creatine-gel pH phantom under serially varied Ts and Td times. Results: The numeric simulation showed that although the apparent CEST effect depends on Td and Ts, the QUASS CEST solution has little dependence. Phantom results showed that the routine CEST pH contrast could be described by a nonlinear regression model (ie, Delta CESTR=Delta CESTReqapp(1 - e-(R1 rho app center dot t)). We had Delta CESTReqapp = 3.90 +/- 0.03% (P < 5e-8) and R-1 rho(app) =0.62 +/- 0.02s(-1) (P < 5e-6). For the QUASS CEST analysis, we modeled the pH contrast as Delta CESTR = Delta CESTReq(QUASS) +s center dot t, using a linear regression model. We had Delta CESTReqQUASS =3.63 +/- 0.01% (P < 5e-9) and s = -0.02 +/- 0.00%/s (P < 0.01), the slope of which is minimal. Conclusions: The QUASS CEST algorithm provides a post-processing solution that facilitates robust CEST measurement.
引用
收藏
页码:3281 / 3289
页数:9
相关论文
共 58 条
[1]   Iopamidol: Exploring the potential use of a well-established X-ray contrast agent for MRI [J].
Aime, S ;
Calabi, L ;
Biondi, L ;
De Miranda, M ;
Ghelli, S ;
Paleari, L ;
Rebaudengo, C ;
Terreno, E .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (04) :830-834
[2]   Brain tumor acidification using drugs simultaneously targeting multiple pH regulatory mechanisms [J].
Albatany, Mohammed ;
Ostapchenko, Valeriy G. ;
Meakin, Susan ;
Bartha, Robert .
JOURNAL OF NEURO-ONCOLOGY, 2019, 144 (03) :453-462
[3]   CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor [J].
Cai, Kejia ;
Singh, Anup ;
Poptani, Harish ;
Li, Weiguo ;
Yang, Shaolin ;
Lu, Yang ;
Hariharan, Hari ;
Zhou, Xiaohong J. ;
Reddy, Ravinder .
NMR IN BIOMEDICINE, 2015, 28 (01) :1-8
[4]   Magnetic resonance imaging of glutamate [J].
Cai, Kejia ;
Haris, Mohammad ;
Singh, Anup ;
Kogan, Feliks ;
Greenberg, Joel H. ;
Hariharan, Hari ;
Detre, John A. ;
Reddy, Ravinder .
NATURE MEDICINE, 2012, 18 (02) :302-306
[5]   Evaluations of Extracellular pH within In Vivo Tumors Using acidoCEST MRI [J].
Chen, Liu Qi ;
Howison, Christine M. ;
Jeffery, Justin J. ;
Robey, Ian F. ;
Kuo, Phillip H. ;
Pagel, Mark D. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) :1408-1417
[6]   Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner [J].
Coman, Daniel ;
Peters, Dana C. ;
Walsh, John J. ;
Savic, Lynn J. ;
Huber, Steffen ;
Sinusas, Albert J. ;
Lin, MingDe ;
Chapiro, Julius ;
Constable, R. Todd ;
Rothman, Douglas L. ;
Duncan, James S. ;
Hyder, Fahmeed .
MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (05) :1553-1564
[7]   Saturated double-angle method for rapid B1 plus mapping [J].
Cunningham, Charles H. ;
Pauly, John M. ;
Nayak, Krishna S. .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (06) :1326-1333
[8]   Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy [J].
Davis, Kathryn Adamiak ;
Nanga, Ravi Prakash Reddy ;
Das, Sandhitsu ;
Chen, Stephanie H. ;
Hadar, Peter N. ;
Pollard, John R. ;
Lucas, Timothy H. ;
Shinohara, Russell T. ;
Litt, Brian ;
Hariharan, Hari ;
Elliott, Mark A. ;
Detre, John A. ;
Reddy, Ravinder .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (309)
[9]   A Concentration-Independent Method to Measure Exchange Rates in PARACEST Agents [J].
Dixon, W. Thomas ;
Ren, Jimin ;
Lubag, Angelo J. M. ;
Ratnakar, James ;
Vinogradov, Elena ;
Hancu, Ileana ;
Lenkinski, Robert E. ;
Sherry, A. Dean .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) :625-632
[10]   Establishing the Lysine-rich Protein CEST Reporter Gene as a CEST MR Imaging Detector for Oncolytic Virotherapy [J].
Farrar, Christian T. ;
Buhrman, Jason S. ;
Liu, Guanshu ;
Kleijn, Anne ;
Lamfers, Martine L. M. ;
McMahon, Michael T. ;
Gilad, Assaf A. ;
Fulci, Giulia .
RADIOLOGY, 2015, 275 (03) :746-754