Free-Standing Si/Graphene Paper Using Si Nanoparticles Synthesized by Acid-Etching Al-Si Alloy Powder for High-Stability Li-Ion Battery Anodes

被引:81
作者
Jiang, Heng [1 ]
Zhou, Xiong [1 ]
Liu, Gonggang [1 ]
Zhou, Yonghua [1 ]
Ye, Hongqi [1 ]
Liu, Yong [2 ,3 ]
Han, Kai [2 ,3 ]
机构
[1] Cent S Univ, Sch Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Cent S Univ, Powder Met Res Inst, Changsha 410083, Peoples R China
基金
中国博士后科学基金;
关键词
Si/graphene paper; Free-standing; Li-ion battery; Binder-free anode; Al-Si alloy; LITHIUM STORAGE; SILICON NANOPARTICLES; COMPOSITE ANODE; C COMPOSITE; BINDER-FREE; GRAPHENE; PERFORMANCE; NANOCOMPOSITES; ELECTRODE; MECHANISM;
D O I
10.1016/j.electacta.2015.12.023
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing scalable, simple and low-cost synthesis approach for Si nanoparticles and fabricating Si/carbon composites with specific microstructure to improve the Li storage ability are of great significance for practical application of Si-based Li-ion battery anode. In this report, we employed a facile method to synthesize Si nanoparticles via acid-etching Al-Si alloy powder. The etching process was fully investigated. The as-synthesized Si nanoparticles (similar to 10 nm) were further embedded into graphene sheets to form a flexible, free-standing paper with "sandwich-like" structure. The Si/graphene paper was directly applied as anode for Li-ion batteries without adding any binder and conductive additive. The graphene sheets not only increase the conductivity of Si material, but also function as a flexible scaffold for strains/stresses release and volume expansion during charge/discharge cycling process, resulting in much higher cycling stability (1500 mAhg(-1) after 100 cycles at a current density of 100 mA g(-1) with Coulombic efficiency >99%) compared to the native Si nanoparticles. It provides a scalable Si nanoparticles synthesis approach and a promising high-performance Si/graphene anode material. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:777 / 784
页数:8
相关论文
共 61 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending [J].
Bao, Chenlu ;
Song, Lei ;
Xing, Weiyi ;
Yuan, Bihe ;
Wilkie, Charles A. ;
Huang, Jianliu ;
Guo, Yuqiang ;
Hu, Yuan .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (13) :6088-6096
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Dong, Zhixin ;
Fu, Yanpeng ;
Yang, Yong .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) :1829-1834
[5]   Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries [J].
Chen, Shuangqiang ;
Yeoh, Waikong ;
Liu, Qi ;
Wang, Guoxiu .
CARBON, 2012, 50 (12) :4557-4565
[6]   Novel nano-silicon/polypyrrole composites for lithium storage [J].
Chew, S. Y. ;
Guo, Z. P. ;
Wang, J. Z. ;
Chen, J. ;
Munroe, P. ;
Ng, S. H. ;
Zhao, L. ;
Liu, H. K. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :941-946
[7]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[8]   Biomolecular screening with encoded porous-silicon photonic crystals [J].
Cunin, F ;
Schmedake, TA ;
Link, JR ;
Li, YY ;
Koh, J ;
Bhatia, SN ;
Sailor, MJ .
NATURE MATERIALS, 2002, 1 (01) :39-41
[9]   Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance [J].
Dai, Fang ;
Zai, Jiantao ;
Yi, Ran ;
Gordin, Mikhail L. ;
Sohn, Hiesang ;
Chen, Shuru ;
Wang, Donghai .
NATURE COMMUNICATIONS, 2014, 5
[10]   Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying [J].
Dong, H ;
Feng, RX ;
Ai, XP ;
Cao, YL ;
Yang, HX .
ELECTROCHIMICA ACTA, 2004, 49 (28) :5217-5222