A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling

被引:41
作者
Ong, Jonah [1 ]
Ba-Tuong Vo [1 ]
Ba-Ngu Vo [1 ]
Kim, Du Yong [2 ]
Nordholm, Sven [1 ]
机构
[1] Curtin Univ, Dept Elect & Comp Engn, Bentley, WA 6102, Australia
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
基金
澳大利亚研究理事会;
关键词
Three-dimensional displays; Cameras; Trajectory; Bayes methods; Detectors; Training; Visualization; Multi-view; multi-sensor; multi-object visual tracking; occlusion handling; generalized labeled multi-bernoulli; PERFORMANCE EVALUATION; MULTITARGET TRACKING; CAMERAS;
D O I
10.1109/TPAMI.2020.3034435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an online multi-camera multi-object tracker that only requires monocular detector training, independent of the multi-camera configurations, allowing seamless extension/deletion of cameras without retraining effort. The proposed algorithm has a linear complexity in the total number of detections across the cameras, and hence scales gracefully with the number of cameras. It operates in the 3D world frame, and provides 3D trajectory estimates of the objects. The key innovation is a high fidelity yet tractable 3D occlusion model, amenable to optimal Bayesian multi-view multi-object filtering, which seamlessly integrates, into a single Bayesian recursion, the sub-tasks of track management, state estimation, clutter rejection, and occlusion/misdetection handling. The proposed algorithm is evaluated on the latest WILDTRACKS dataset, and demonstrated to work in very crowded scenes on a new dataset.
引用
收藏
页码:2246 / 2263
页数:18
相关论文
共 69 条
[1]   SALSA: A Novel Dataset for Multimodal Group Behavior Analysis [J].
Alameda-Pineda, Xavier ;
Staiano, Jacopo ;
Subramanian, Ramanathan ;
Batrinca, Ligia ;
Ricci, Elisa ;
Lepri, Bruno ;
Lanz, Oswald ;
Sebe, Nicu .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (08) :1707-1720
[2]   People-tracking-by-detection and people-detection-by-tracking [J].
Andriluka, Mykhaylo ;
Roth, Stefan ;
Schiele, Bernt .
2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, :1873-1880
[3]  
Andriyenko A., 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), P1839, DOI 10.1109/ICCVW.2011.6130472
[4]  
[Anonymous], 2004, IEEECOMPUT SOC C COM
[5]   Multi-Sensor Multi-Object Tracking With the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Beard, Michael .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) :5952-5967
[6]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[7]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[8]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[9]   Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection [J].
Baque, Pierre ;
Fleuret, Francois ;
Fua, Pascal .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :271-279
[10]  
Bar-Shalom Y., 1988, Tracking and Data Association