Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting

被引:160
作者
Li, Yinyin [1 ]
Wu, Qiannan [2 ]
Chen, Yifan [3 ]
Zhang, Rui [1 ]
Li, Cuiyan [2 ]
Zhang, Kai [1 ]
Li, Mingjie [3 ]
Lin, Yanhong [1 ]
Wang, Dejun [1 ]
Zou, Xiaoxin [2 ]
Xie, Tengfeng [1 ]
机构
[1] Jilin Univ, Coll Chem, Inst Phys Chem, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti-Fe2O3/In(2)O(3)photoanode; Z-scheme mechanism; Transient absorption spectroscopy; Interfical electric field; Water splitting; PHOTOCATALYTIC ACTIVITY; CHARGE SEPARATION; HETEROJUNCTION; FILMS;
D O I
10.1016/j.apcatb.2021.120058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploiting interface-engineer of In2O3-based photoanode to achieve a higher charge separation efficiency could be regarded as a pivotal but challenging research in water splitting. Herein, the state-of-the-art Ti-Fe2O3/In2O3 photoanodes with different Ti4+ doping concentrations are fabricated for exploring the interface-engineering effect on PEC performance. The optimized 150Ti-Fe2O3/In2O3 photoelectrode with the rapid interfacial hole trapped (similar to 8.96 ps) and long-lived charge separation states could achieve excellent PEC performance by femtosecond time-resolved absorption spectroscopy (fs-TAS). As expected, it shows the highest photocurrent density of 2 mA/cm(2) at 1.23 V vs. RHE, which is nearly 7 times higher compared with pure In2O3. Moreover, the Z-scheme mechanism could be fully confirmed by femtosecond time-resolved absorption spectroscopy (fs-TAS) and in-situ double-beam detection strategy (AM 1.5 + 405 nm). This work provides an effective and feasible strategy on designing and regulating high-efficiency composite photoanode with Z-scheme transfer mechanism.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Photochemiresistor Sensor Development Based on a Bismuth Vanadate Type Semiconductor for Determination of Chemical Oxygen Demand [J].
Alves, Nayara A. ;
Olean-Oliveira, Andre ;
Cardoso, Celso X. ;
Teixeira, Marcos F. S. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) :18723-18729
[2]   Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity [J].
Bhunia, Manas K. ;
Melissen, Sigismund ;
Parida, Manas R. ;
Sarawade, Pradip ;
Basset, Jean-Marie ;
Anjum, Dalaver H. ;
Mohammed, Omar F. ;
Sautet, Philippe ;
Le Bahers, Tangui ;
Takanabe, Kazuhiro .
CHEMISTRY OF MATERIALS, 2015, 27 (24) :8237-8247
[3]   Hole Transfer Channel of Ferrihydrite Designed between Ti-Fe2O3 and CoPi as an Efficient and Durable Photoanode [J].
Bu, Qijing ;
Li, Shuo ;
Zhang, Kai ;
Lin, Yanhong ;
Wang, Dejun ;
Zou, Xiaoxin ;
Xie, Tengfeng .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (12) :10971-10978
[4]   Acetone sensing characteristics of Fe2O3/In2O3 nanocomposite [J].
Cao, Ensi ;
Song, Guoqing ;
Guo, Zhaoqing ;
Zhang, Yongjia ;
Hao, Wentao ;
Sun, Li ;
Nie, Zhongquan .
MATERIALS LETTERS, 2020, 261
[5]   3D Porous Pyramid Heterostructure Array Realizing Efficient Photo-Electrochemical Performance [J].
Cao, Shuyan ;
Wu, Yunzhen ;
Hou, Jungang ;
Zhang, Bo ;
Li, Zhuwei ;
Nie, Xiaowa ;
Sun, Licheng .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[6]   Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation [J].
Chen, Changlong ;
Moir, Jonathon ;
Soheilnia, Navid ;
Mahler, Benoit ;
Hoch, Laura ;
Liao, Kristine ;
Hoepfner, Veronika ;
O'Brien, Paul ;
Qian, Chenxi ;
He, Le ;
Ozin, Geoffrey A. .
NANOSCALE, 2015, 7 (08) :3683-3693
[7]   Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method [J].
Chen, Dong ;
Liu, Zhifeng ;
Zhang, Shaoce .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[8]   Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors [J].
Chen, Yao ;
Huang, Wei ;
Sangwan, Vinod K. ;
Wang, Binghao ;
Zeng, Li ;
Wang, Gang ;
Huang, Yan ;
Lu, Zhiyun ;
Bedzyk, Michael J. ;
Hersam, Mark C. ;
Marks, Tobin J. ;
Facchetti, Antonio .
ADVANCED MATERIALS, 2019, 31 (04)
[9]   Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting [J].
Chen, Ying ;
Wang, Li ;
Gao, Ruijie ;
Zhang, Yong-Chao ;
Pan, Lun ;
Huang, Chenyu ;
Liu, Kan ;
Chang, Xin-Yuan ;
Zhang, Xiangwen ;
Zou, Ji-Jun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 259
[10]   Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production [J].
Chen, Yuanjun ;
Ji, Shufang ;
Sun, Wenming ;
Lei, Yongpeng ;
Wang, Qichen ;
Li, Ang ;
Chen, Wenxing ;
Zhou, Gang ;
Zhang, Zedong ;
Wang, Yu ;
Zheng, Lirong ;
Zhang, Qinghua ;
Gu, Lin ;
Han, Xiaodong ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (03) :1295-1301