Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets

被引:87
作者
Ng, Dianwen [1 ]
Lan, Xiang [1 ]
Yao, Melissa Min-Szu [2 ,3 ]
Chan, Wing P. [2 ,3 ,4 ]
Feng, Mengling [1 ]
机构
[1] Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Tahir Fdn Bldg 12 Sci Dr 2,10-01, Singapore, Singapore
[2] Taipei Med Univ, Wan Fang Hosp, Dept Radiol, 111 Hsing Long Rd,Sect 3, Taipei, Taiwan
[3] Taipei Med Univ, Coll Med, Sch Med, Dept Radiol, Taipei, Taiwan
[4] Taipei Med Univ, Wan Fang Hosp, Med Innovat Dev Ctr, Taipei, Taiwan
基金
新加坡国家研究基金会;
关键词
Artificial intelligence (AI); data; federated learning; medical imaging;
D O I
10.21037/qims-20-595
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Despite the overall success of using artificial intelligence (AI) to assist radiologists in performing computer-aided patient diagnosis, it remains challenging to build good models with small datasets at individual sites. Because many medical images do not come with proper labelling for training, this requires radiologists to perform strenuous labelling work and to prepare the dataset for training. Placing such demands on radiologists is unsustainable, given the ever-increasing number of medical images taken each year. We propose an alternative solution using a relatively new learning framework. This framework, called federated learning, allows individual sites to train a global model in a collaborative effort. Federated learning involves aggregating training results from multiple sites to create a global model without directly sharing datasets. This ensures that patient privacy is maintained across sites. Furthermore, the added supervision obtained from the results of partnering sites improves the global model's overall detection abilities. This alleviates the issue of insufficient supervision when training AI models with small datasets. Lastly, we also address the major challenges of adopting federated learning.
引用
收藏
页码:852 / 857
页数:6
相关论文
共 8 条
[1]  
[Anonymous], 2017, CHEXNET RADIOLOGIST
[2]  
Bakas S, SEGMENTATION LABELS
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]  
Konecny J., 2016, WORKSH PRIV MULT MAC
[5]  
Li W, 2019, INT WORKSH MACH LEAR
[6]   Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study [J].
Li, Xiangchun ;
Zhang, Sheng ;
Zhang, Qiang ;
Wei, Xi ;
Pan, Yi ;
Zhao, Jing ;
Xin, Xiaojie ;
Qin, Chunxin ;
Wang, Xiaoqing ;
Li, Jianxin ;
Yang, Fan ;
Zhao, Yanhui ;
Yang, Meng ;
Wang, Qinghua ;
Zheng, Ming ;
Zheng, Xiangqian ;
Yang, Xiangming ;
Whitlow, Christopher T. ;
Gurcan, Metin Nafi ;
Zhang, Lun ;
Wang, Xudong ;
Pasche, Boris C. ;
Gao, Ming ;
Zhang, Wei ;
Chen, Kexin .
LANCET ONCOLOGY, 2019, 20 (02) :193-201
[7]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[8]  
Sheller MJ, 2018, INT MICCAI BRAINL WO