Excitation of Fluorescent Lipid Probes Accelerates Supported Lipid Bilayer Formation via Photosensitized Lipid Oxidation

被引:7
|
作者
Baxter, Ashley M. [1 ]
Wittenberg, Nathan J. [1 ]
机构
[1] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
关键词
QUARTZ-CRYSTAL MICROBALANCE; BIOPHYSICAL PROPERTIES; VESICLE ADSORPTION; CHEMISTRY; SURFACE; OXYGEN; PHOSPHOLIPIDS; DYNAMICS; HEALTH;
D O I
10.1021/acs.langmuir.9b01535
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorescent lipid probes are commonly used to label membranes of cells and model membranes like giant vesicles, liposomes, and supported lipid bilayers (SLB). Here, we show that excitation of fluorescent lipid probes with BODIPY-like conjugates results in a significant acceleration of the rupture and SLB formation process for unsaturated phospholipid vesicles on SiO2 surfaces. The resulting SLBs also have smaller measured masses, which is indicative of a reduction in membrane thickness and/or membrane density. The excitation of fluorescent probes with NBD and Texas Red conjugates does not accelerate the SLB formation process. In the absence of fluorescent probes or light, the inclusion of oxidized phospholipids also accelerates SLB formation. The excitation- induced acceleration caused by BODIPY-like probes is eliminated when the probes are present with saturated phospholipids not susceptible to oxidation, and it is attenuated when a lipophilic antioxidant (alpha-tocopherol) is present. These results suggest that BODIPY-phospholipid conjugates are photosensitizers, and their excitation causes oxidation of lipid membranes, which significantly alters membrane properties.
引用
收藏
页码:11542 / 11549
页数:8
相关论文
共 50 条
  • [1] Excitation of Fluorescent Lipid Probes Accelerates Phospholipid Vesicle Rupture and Supported Lipid Bilayer Formation
    Baxter, Ashley M.
    Wittenberg, Nathan J.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 81A - 82A
  • [2] The Effects of Photosensitized Lipid Oxidation on Supported Lipid Bilayer Formation and Membrane Deformation
    Baxter, Ashley M.
    Wittenberg, Nathan J.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 387A - 387A
  • [3] Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation
    Baxter, Ashley M.
    Jordan, Luke R.
    Kullappan, Monicka
    Wittenberg, Nathan J.
    LANGMUIR, 2021, 37 (19) : 5753 - 5762
  • [4] Structural defects of a supported lipid bilayer induced by photosensitized lipid oxidation
    Baxter, Ashley M.
    Wittenberg, Nathan J.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 365A - 365A
  • [5] The Role of Bilayer Edges in Supported Lipid Bilayer Formation at Low Lipid Concentrations
    Weirich, Kimberly L.
    Israelachvili, Jacob N.
    Fygenson, D. Kuchnir
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 349A - 349A
  • [6] Itraconazole Perturbs Behavior of Fluorescent Probes in Lipid Bilayer
    Poojari, Chetan
    Wilkosz, Natalia
    Jurkiewicz, Piotr
    Vattulainen, Ilpo
    Kepczynski, Mariusz
    Rog, Tomasz
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 81A - 81A
  • [7] Supported Bilayer Lipid Membranes as Ion and Molecular Probes
    H. T. Tien
    R. H. Barish
    L.-Q. Gu
    A. L. Ottova
    Analytical Sciences, 1998, 14 : 3 - 18
  • [8] Supported Bilayer Lipid Membranes as Ion and Molecular Probes
    Membrane Biophysics Lab, Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
    不详
    不详
    Anal. Sci., 1 (3-18):
  • [9] Supported bilayer lipid membranes as ion and molecular probes
    Tien, HT
    Barish, RH
    Gu, LQ
    Ottova, AL
    ANALYTICAL SCIENCES, 1998, 14 (01) : 3 - 18
  • [10] Bilayer Edges Catalyze Supported Lipid Bilayer Formation
    Weirich, Kimberly L.
    Israelachvili, Jacob N.
    Fygenson, D. Kuchnir
    BIOPHYSICAL JOURNAL, 2010, 98 (01) : 85 - 92