Recent advances in shear-thinning and self-healing hydrogels for biomedical applications

被引:274
作者
Uman, Selen [1 ]
Dhand, Abhishek [2 ]
Burdick, Jason A. [1 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
shear-thinning; self-healing; injectable hydrogels; drug delivery; tissue engineering; HYALURONIC-ACID HYDROGELS; DOUBLE-NETWORK HYDROGELS; SITU CROSS-LINKING; OPPOSITELY CHARGED POLYELECTROLYTES; GROWTH-FACTOR DELIVERY; SUPRAMOLECULAR HYDROGELS; INJECTABLE HYDROGELS; DRUG-DELIVERY; ALGINATE HYDROGELS; NANOCOMPOSITE HYDROGELS;
D O I
10.1002/app.48668
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Shear-thinning and self-healing hydrogels are being investigated in various biomedical applications including drug delivery, tissue engineering, and 3D bioprinting. Such hydrogels are formed through dynamic and reversible interactions between polymers or polypeptides that allow these shear-thinning and self-healing properties, including physical associations (e.g., hydrogen bonds, guest-host interactions, biorecognition motifs, hydrophobicity, electrostatics, and metal-ligand coordination) and dynamic covalent chemistry (e.g., Schiff base, oxime chemistry, disulfide bonds, and reversible Diels-Alder). Their shear-thinning properties allow for injectability, as the hydrogel exhibits viscous flow under shear, and their self-healing nature allows for stabilization when shear is removed. Hydrogels can be formulated as uniform polymer and polypeptide assemblies, as hydrogel nanocomposites, or in granular hydrogel form. This review focuses on recent advances in shear-thinning and self-healing hydrogels that are promising for biomedical applications. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48668.
引用
收藏
页数:20
相关论文
共 230 条
[1]  
Adams D. J., 2013, ROYAL SOC CHEM, V6, P1
[2]  
Aguado BA, 2012, TISSUE ENG PT A, V18, P806, DOI [10.1089/ten.tea.2011.0391, 10.1089/ten.TEA.2011.0391]
[3]  
Ahn BK, 2014, NAT MATER, V13, P867, DOI [10.1038/nmat4037, 10.1038/NMAT4037]
[4]  
Aijaz A, 2015, TISSUE ENG PT A, V21, P2723, DOI [10.1089/ten.tea.2015.0069, 10.1089/ten.TEA.2015.0069]
[5]   Probing Exchange Pathways in One-Dimensional Aggregates with Super-Resolution Microscopy [J].
Albertazzi, Lorenzo ;
van der Zwaag, Daan ;
Leenders, Christianus M. A. ;
Fitzner, Robert ;
van der Hofstad, Remco W. ;
Meijer, E. W. .
SCIENCE, 2014, 344 (6183) :491-495
[6]   Spatiotemporal control and superselectivity in supramolecular polymers using multivalency [J].
Albertazzi, Lorenzo ;
Martinez-Veracoechea, Francisco J. ;
Leenders, Christianus M. A. ;
Voets, Ilja K. ;
Frenkel, Daan ;
Meijer, E. W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) :12203-12208
[7]   Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel [J].
Angelopoulou, A. ;
Voulgari, E. ;
Diamanti, E. K. ;
Gournis, D. ;
Avgoustakis, K. .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2015, 93 :18-26
[8]  
[Anonymous], 2017, Adv. Mater
[9]   Exploiting Electrostatic Interactions in Polymer-Nanoparticle Hydrogels [J].
Appel, Eric A. ;
Tibbitt, Mark W. ;
Greer, Jessica M. ;
Fenton, Owen S. ;
Kreuels, Klaus ;
Anderson, Daniel G. ;
Langer, Robert .
ACS MACRO LETTERS, 2015, 4 (08) :848-852
[10]   Self-assembled hydrogels utilizing polymer-nanoparticle interactions [J].
Appel, Eric A. ;
Tibbitt, Mark W. ;
Webber, Matthew J. ;
Mattix, Bradley A. ;
Veiseh, Omid ;
Langer, Robert .
NATURE COMMUNICATIONS, 2015, 6