Isomorphisms of geodesic flows on quadrics

被引:7
作者
Borisov, A. V. [1 ]
Mamaev, I. S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
关键词
quadric; geodesic flows; integrability; compactification; regularization; isomorphism; DYNAMICS;
D O I
10.1134/S1560354709040030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several well-known isomorphisms between Jacobi's geodesic problem and some integrable cases from rigid body dynamics (the cases of Clebsch and Brun). A relationship between these isomorphisms is indicated. The problem of compactification for geodesic flows on noncompact surfaces is stated. This problem is hypothesized to be intimately connected with the property of integrability.
引用
收藏
页码:455 / 465
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1983, Tata Lectures on Theta. Progress in Mathematics
[2]  
BOGOYAVLENSKY OI, 1991, REVERSING SOLITONS N
[3]  
Bolsinov A.V., 1997, REGUL CHAOTIC DYN, V2, P13
[4]   Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2008, 13 (05) :443-490
[5]   STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE [J].
Borisov, A. V. ;
Kilin, A. A. .
REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02) :189-200
[6]   The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids [J].
Borisov, A. V. ;
Kilin, A. A. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02) :179-217
[7]   Multiparticle systems. The algebra of integrals and integrable cases [J].
Borisov, A. V. ;
Kilin, A. A. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01) :18-41
[8]  
Borisov A. V, 2003, Modern Methods of the Theory of Integrable Systems
[9]  
Borisov A. V., 2005, Rigid Body Dynamics. Hamiltonian Methods, Integrability
[10]  
Borisov A. V., 1996, REGUL CHAOTIC DYN, V1, P61