Wind Turbine Power Curve Upgrades

被引:42
作者
Astolfi, Davide [1 ]
Castellani, Francesco [1 ]
Terzi, Ludovico [2 ]
机构
[1] Univ Perugia, Dept Engn, Via G Duranti 93, I-06125 Perugia, Italy
[2] Renvico Srl, Via San Gregorio 34, I-20124 Milan, Italy
关键词
wind energy; wind turbines; Supervisory Control And Data Acquisition (SCADA); retrofitting; performance evaluation; COMPLEX TERRAIN; FARMS; WAKES; AIRFOIL; IMPACT; FLOW;
D O I
10.3390/en11051300
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Full-scale wind turbine is a mature technology and therefore several retrofitting techniques have recently been spreading in the industry to further improve the efficiency of wind kinetic energy conversion. This kind of interventions is costly and, furthermore, the energy improvement is commonly estimated under the hypothesis of ideal wind conditions, but real ones can be very different because of wake interactions and/or wind shear induced by the terrain. A precise quantification of the energy gained in real environment is therefore precious. Wind turbines are subjected to non-stationary conditions and therefore it makes little sense to compare energy production before and after an upgrade: the post-upgrade production should rather be compared to a model of the pre-upgrade production under the same conditions. Since the energy improvement is typically of the order of few percents, a very precise model of wind turbine power output is needed and therefore it should be data-driven. Furthermore, the formulation of the model is heavily affected by the features of the available data set and by the nature of the problem. The objective of this work is the discussion of some wind turbine power curve upgrades on the grounds of operational data analysis. The selected test cases are: improved start-up through pitch angle adjustment near the cut-in, aerodynamic blade retrofitting by means of vortex generators and passive flow control devices, and extension of the power curve through a soft cut-out strategy for very high wind speed. The criticality of each test case is discussed and appropriate data-driven models are formulated. These are employed to estimate the energy improvement from each of the upgrades under investigation. The general outcome of this work is a catalog of generalizable methods for studying wind turbine power curve upgrades. In particular, from the study of the selected test cases, it arises that complex wind conditions might affect wind turbine operation such that the production improvement is non-negligibly different from what can be estimated under the hypothesis of ideal wind conditions. A complex wind flow might actually impact on the efficiency of vortex generators and the soft cut-out strategies at high wind speeds. The general lesson is therefore that it is very important to estimate wind turbine upgrades on real environments through operational data.
引用
收藏
页数:17
相关论文
共 33 条
[1]  
[Anonymous], 2005, 6140012 IEC
[2]  
[Anonymous], P EWEC 2009 MARS FRA
[3]   A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data [J].
Astolfi, Davide ;
Castellani, Francesco ;
Terzi, Ludovico .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (03)
[4]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[5]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[6]  
Bossanyi E., 2012, P EUR WIND EN C EXH, V2012
[7]   Review of power curve modelling for wind turbines [J].
Carrillo, C. ;
Obando Montano, A. F. ;
Cidras, J. ;
Diaz-Dorado, E. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 21 :572-581
[8]   Investigation of terrain and wake effects on the performance of wind farms in complex terrain using numerical and experimental data [J].
Castellani, Francesco ;
Astolfi, Davide ;
Mana, Matteo ;
Piccioni, Emanuele ;
Becchetti, Matteo ;
Terzi, Ludovico .
WIND ENERGY, 2017, 20 (07) :1277-1289
[9]   Numerical modelling for wind farm operational assessment in complex terrain [J].
Castellani, Francesco ;
Astolfi, Davide ;
Burlando, Massimiliano ;
Terzi, Ludovico .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2015, 147 :320-329
[10]   Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices [J].
Fernandez-Gamiz, Unai ;
Zulueta, Ekaitz ;
Boyano, Ana ;
Ansoategui, Igor ;
Uriarte, Irantzu .
ENERGIES, 2017, 10 (06)