Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states

被引:71
作者
Chen, Hongliang [1 ]
Li, Mingliang [1 ]
Lu, Zheyu [2 ]
Wang, Xiaoge [1 ]
Yang, Junsheng [3 ]
Wang, Zhe [2 ]
Zhang, Fei [1 ]
Gu, Chunhui [1 ]
Zhang, Weining [1 ]
Sun, Yujie [3 ]
Sun, Junliang [1 ]
Zhu, Wenguang [2 ]
Guo, Xuefeng [1 ,4 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[2] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Chinese Acad Sci,Sch Phys Sci,ICQD, Hefei 230026, Anhui, Peoples R China
[3] Peking Univ, Sch Life Sci, Biomed Pioneering Innovat Ctr, State Key Lab Membrane Biol, Beijing 100871, Peoples R China
[4] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
INSTABILITY; TRANSPORT; SURFACE;
D O I
10.1038/s41467-019-11887-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular self-assembly into crystallised films or wires on surfaces produces a big family of motifs exhibiting unique optoelectronic properties. However, little attention has been paid to the fundamental mechanism of molecular crystallisation. Here we report a biomimetic design of phosphonate engineered, amphiphilic organic semiconductors capable of self-assembly, which enables us to use real-time in-situ scanning probe microscopy to monitor the growth trajectories of such organic semiconducting films as they nucleate and crystallise from amorphous solid states. The single-crystal film grows through an evolutionary selection approach in a two-dimensional geometry, with five distinct steps: droplet flattening, film coalescence, spinodal decomposition, Ostwald ripening, and self-reorganised layer growth. These sophisticated processes afford ultralong high-density microwire arrays with high mobilities, thus promoting deep understanding of the mechanism as well as offering important insights into the design and development of functional high-performance organic optoelectronic materials and devices through molecular and crystal engineering.
引用
收藏
页数:10
相关论文
共 34 条
[1]  
Aliprandi A, 2016, NAT CHEM, V8, P10, DOI [10.1038/NCHEM.2383, 10.1038/nchem.2383]
[2]   Supramolecular materials [J].
Amabilino, David B. ;
Smith, David K. ;
Steed, Jonathan W. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (09) :2404-2420
[3]   Quantifying growth of symmetric and asymmetric lipid bilayer domains [J].
Blanchette, Craig D. ;
Orme, Christine A. ;
Ratto, Timothy V. ;
Longo, Marjorie L. .
LANGMUIR, 2008, 24 (04) :1219-1224
[4]   Building two-dimensional materials one row at a time: Avoiding the nucleation barrier [J].
Chen, Jiajun ;
Zhu, Enbo ;
Liu, Juan ;
Zhang, Shuai ;
Lin, Zhaoyang ;
Duan, Xiangfeng ;
Heinz, Hendrik ;
Huang, Yu ;
De Yoreo, James J. .
SCIENCE, 2018, 362 (6419) :1135-+
[5]   Molecular modifiers reveal a mechanism of pathological crystal growth inhibition [J].
Chung, Jihae ;
Granja, Ignacio ;
Taylor, Michael G. ;
Mpourmpakis, Giannis ;
Asplin, John R. ;
Rimer, Jeffrey D. .
NATURE, 2016, 536 (7617) :446-+
[6]   Biomimetic self-templating supramolecular structures [J].
Chung, Woo-Jae ;
Oh, Jin-Woo ;
Kwak, Kyungwon ;
Lee, Byung Yang ;
Meyer, Joel ;
Wang, Eddie ;
Hexemer, Alexander ;
Lee, Seung-Wuk .
NATURE, 2011, 478 (7369) :364-368
[7]   Nucleation of Organic CrystalsA Molecular Perspective [J].
Davey, Roger J. ;
Schroeder, Sven L. M. ;
ter Horst, Joop H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (08) :2166-2179
[8]  
Fukui T, 2017, NAT CHEM, V9, P493, DOI [10.1038/NCHEM.2684, 10.1038/nchem.2684]
[9]  
Gädt T, 2009, NAT MATER, V8, P144, DOI [10.1038/nmat2356, 10.1038/NMAT2356]
[10]   Pre-nucleation clusters as solute precursors in crystallisation [J].
Gebauer, Denis ;
Kellermeier, Matthias ;
Gale, Julian D. ;
Bergstrom, Lennart ;
Coelfen, Helmut .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (07) :2348-2371