Local boundedness and Holder continuity for the parabolic fractional p-Laplace equations

被引:30
作者
Ding, Mengyao [1 ]
Zhang, Chao [2 ,3 ]
Zhou, Shulin [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
35B45; 35B65; 35R11; 35K55;
D O I
10.1007/s00526-020-01870-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the boundedness and Holder continuity of local weak solutions to the following nonhomogeneous equation partial derivative tu(x,t)+P.V.integral RNK(x,y,t)|u(x,t)-u(y,t)|p-2(u(x,t)-u(y,t))dy=f(x,t,u)in QT=Omega x(0,T), where the symmetric kernel K(x, y, t) has a generalized form of the fractional p-Laplace operator of s-order. We impose some structural conditions on the function f and use the De Giorgi-Nash-Moser iteration to establish the boundedness of local weak solutions in the a priori way. Based on the boundedness result, we also obtain Holder continuity of bounded solutions in the superquadratic case. These results can be regarded as a counterpart to the elliptic case due to Di Castro et al. (Ann Inst H Poincare Anal Non Lineaire, 2016).
引用
收藏
页数:45
相关论文
共 44 条
[1]   Animal search strategies: A quantitative. random-walk analysis [J].
Bartumeus, F ;
Da Luz, MGE ;
Viswanathan, GM ;
Catalan, J .
ECOLOGY, 2005, 86 (11) :3078-3087
[2]   Holder continuity of harmonic functions with respect to operators of variable order [J].
Bass, RF ;
Kassmann, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1249-1259
[3]   Optimal existence and uniqueness theory for the fractional heat equation [J].
Bonforte, Matteo ;
Sire, Yannick ;
Luis Vazquez, Juan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 :142-168
[4]  
Brasco L., ARXIV190700910
[5]   Higher Holder regularity for the fractional p-Laplacian in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik ;
Schikorra, Armin .
ADVANCES IN MATHEMATICS, 2018, 338 :782-846
[6]   Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik .
ADVANCES IN MATHEMATICS, 2017, 304 :300-354
[7]   REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS [J].
Caffarelli, Luis ;
Chan, Chi Hin ;
Vasseur, Alexis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :849-869
[8]   Regularity Results for Nonlocal Equations by Approximation [J].
Caffarelli, Luis ;
Silvestre, Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :59-88
[9]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[10]  
Cont Rama, 2004, Financial modeling with jump processes