Replica symmetry and replica symmetry breaking for the traveling salesperson problem

被引:2
作者
Schawe, Hendrik [1 ]
Jha, Jitesh Kumar [1 ,2 ]
Hartmann, Alexander K. [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[2] Manipal Inst Technol, Manipal 576104, Karnataka, India
关键词
STATISTICAL-MECHANICS; SALESMAN PROBLEM; FINITE-SIZE; APPROXIMATION;
D O I
10.1103/PhysRevE.100.032135
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the energy landscape of the traveling salesperson problem (TSP) using exact ground states and a novel linear programming approach to generate excited states with closely defined properties. We look at four different ensembles, notably the classic finite dimensional Euclidean TSP and the mean-field-like (1,2)-TSP, which has its origin directly in the mapping of the Hamiltonian circuit problem on the TSP. Our data supports previous conjectures that the Euclidean TSP does not show signatures of replica symmetry breaking neither in two nor in higher dimension. On the other hand the (1,2)-TSP exhibits some signature which does not exclude broken replica symmetry, making it a candidate for further studies in the future.
引用
收藏
页数:8
相关论文
共 60 条
  • [1] Domain-wall energies and magnetization of the two-dimensional random-bond Ising model
    Amoruso, C
    Hartmann, AK
    [J]. PHYSICAL REVIEW B, 2004, 70 (13) : 134425 - 1
  • [2] [Anonymous], 1991, IJCAI, DOI DOI 10.5555/1631171.1631221
  • [3] [Anonymous], 1972, P COMPLEXITY COMPUTE
  • [4] Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems
    Applegate, D
    Bixby, R
    Chvátal, V
    Cook, W
    [J]. MATHEMATICAL PROGRAMMING, 2003, 97 (1-2) : 91 - 153
  • [5] Applegate D, 1998, INT C MATH, P645
  • [6] Applegate D., 2010, 42 BRAZ S OP RES
  • [7] Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
    Arora, S
    [J]. JOURNAL OF THE ACM, 1998, 45 (05) : 753 - 782
  • [8] Barthel W, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066120
  • [9] Beardwood J., 1959, MATH PROC CAMBRIDGE, V55, P299, DOI [DOI 10.1017/S0305004100034095, 10.1017/S0305004100034095]
  • [10] Cerf NJ, 1997, J PHYS I, V7, P117, DOI 10.1051/jp1:1997129