Selection on X1

被引:2
作者
Kreitzberg, Patrick [1 ]
Lucke, Kyle [2 ]
Pennington, Jake [1 ]
Serang, Oliver [2 ]
机构
[1] Univ Montana, Dept Math, Missoula, MT 59812 USA
[2] Univ Montana, Dept Comp Sci, Missoula, MT 59812 USA
来源
PEERJ COMPUTER SCIENCE | 2021年
基金
美国国家科学基金会;
关键词
Selection; Cartesian product; Tree; Sorting; CONVOLUTION;
D O I
10.7717/peerj-cs.483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selection on the Cartesian product is a classic problem in computer science. Recently, an optimal algorithm for selection on A+B, based on soft heaps, was introduced. By combining this approach with layer-ordered heaps (LOHs), an algorithm using a balanced binary tree of A+B selections was proposed to perform selection on X-1+X-2+...+X-m in o(n.m+k.m), where X-i have length n. Here, that o(n.m+k.m) algorithm is combined with a novel, optimal LOH-based algorithm for selection on A+B (without a soft heap). Performance of algorithms for selection on X-1+X-2+...+X-m are compared empirically, demonstrating the benefit of the algorithm proposed here.
引用
收藏
页数:11
相关论文
共 14 条
  • [1] Necklaces, Convolutions, and X plus Y
    Bremner, David
    Chan, Timothy M.
    Demaine, Erik D.
    Erickson, Jeff
    Hurtado, Ferran
    Iacono, John
    Langerman, Stefan
    Patrascu, Mihai
    Taslakian, Perouz
    [J]. ALGORITHMICA, 2014, 69 (02) : 294 - 314
  • [2] FAST ALGORITHMS FOR THE MAXIMUM CONVOLUTION PROBLEM
    BUSSIECK, M
    HASSLER, H
    WOEGINGER, GJ
    ZIMMERMANN, UT
    [J]. OPERATIONS RESEARCH LETTERS, 1994, 15 (03) : 133 - 141
  • [3] The soft heap: An approximate priority queue with optimal error rate
    Chazelle, B
    [J]. JOURNAL OF THE ACM, 2000, 47 (06) : 1012 - 1027
  • [4] THE COMPLEXITY OF SELECTION AND RANKING IN X + Y AND MATRICES WITH SORTED COLUMNS
    FREDERICKSON, GN
    JOHNSON, DB
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (02) : 197 - 208
  • [5] Fredman M. L., 1976, Theoretical Computer Science, V1, P355, DOI 10.1016/0304-3975(76)90078-5
  • [6] SELECTING KTH ELEMENT IN X+Y AND X1+X2+ ... +XM
    JOHNSON, DB
    MIZOGUCHI, T
    [J]. SIAM JOURNAL ON COMPUTING, 1978, 7 (02) : 147 - 153
  • [7] Kaplan H, 2019, S SIMPLICITY ALGORIT, V69
  • [8] Kreitzberg P., 2020, ARXIV PREPRINT ARXIV
  • [9] Kreitzberg P, 2021, J MACH LEARN RES
  • [10] Fast Exact Computation of the k Most Abundant Isotope Peaks with Layer-Ordered Heaps
    Kreitzberg, Patrick
    Pennington, Jake
    Lucke, Kyle
    Serang, Oliver
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (15) : 10613 - 10619