Selection on X1

被引:2
作者
Kreitzberg, Patrick [1 ]
Lucke, Kyle [2 ]
Pennington, Jake [1 ]
Serang, Oliver [2 ]
机构
[1] Univ Montana, Dept Math, Missoula, MT 59812 USA
[2] Univ Montana, Dept Comp Sci, Missoula, MT 59812 USA
来源
PEERJ COMPUTER SCIENCE | 2021年
基金
美国国家科学基金会;
关键词
Selection; Cartesian product; Tree; Sorting; CONVOLUTION;
D O I
10.7717/peerj-cs.483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selection on the Cartesian product is a classic problem in computer science. Recently, an optimal algorithm for selection on A+B, based on soft heaps, was introduced. By combining this approach with layer-ordered heaps (LOHs), an algorithm using a balanced binary tree of A+B selections was proposed to perform selection on X-1+X-2+...+X-m in o(n.m+k.m), where X-i have length n. Here, that o(n.m+k.m) algorithm is combined with a novel, optimal LOH-based algorithm for selection on A+B (without a soft heap). Performance of algorithms for selection on X-1+X-2+...+X-m are compared empirically, demonstrating the benefit of the algorithm proposed here.
引用
收藏
页数:11
相关论文
共 14 条
[1]   Necklaces, Convolutions, and X plus Y [J].
Bremner, David ;
Chan, Timothy M. ;
Demaine, Erik D. ;
Erickson, Jeff ;
Hurtado, Ferran ;
Iacono, John ;
Langerman, Stefan ;
Patrascu, Mihai ;
Taslakian, Perouz .
ALGORITHMICA, 2014, 69 (02) :294-314
[2]   FAST ALGORITHMS FOR THE MAXIMUM CONVOLUTION PROBLEM [J].
BUSSIECK, M ;
HASSLER, H ;
WOEGINGER, GJ ;
ZIMMERMANN, UT .
OPERATIONS RESEARCH LETTERS, 1994, 15 (03) :133-141
[3]   The soft heap: An approximate priority queue with optimal error rate [J].
Chazelle, B .
JOURNAL OF THE ACM, 2000, 47 (06) :1012-1027
[4]   THE COMPLEXITY OF SELECTION AND RANKING IN X + Y AND MATRICES WITH SORTED COLUMNS [J].
FREDERICKSON, GN ;
JOHNSON, DB .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (02) :197-208
[5]  
Fredman M. L., 1976, Theoretical Computer Science, V1, P355, DOI 10.1016/0304-3975(76)90078-5
[6]   SELECTING KTH ELEMENT IN X+Y AND X1+X2+ ... +XM [J].
JOHNSON, DB ;
MIZOGUCHI, T .
SIAM JOURNAL ON COMPUTING, 1978, 7 (02) :147-153
[7]  
Kaplan H, 2019, S SIMPLICITY ALGORIT, V69
[8]  
Kreitzberg P., 2020, ARXIV PREPRINT ARXIV
[9]  
Kreitzberg P, 2021, J MACH LEARN RES
[10]   Fast Exact Computation of the k Most Abundant Isotope Peaks with Layer-Ordered Heaps [J].
Kreitzberg, Patrick ;
Pennington, Jake ;
Lucke, Kyle ;
Serang, Oliver .
ANALYTICAL CHEMISTRY, 2020, 92 (15) :10613-10619