A deep learning-based concept for high throughput image flow cytometry

被引:4
作者
Martin-Wortham, Julie [1 ,2 ]
Recktenwald, Steffen M. [2 ]
Lopes, Marcelle G. M. [2 ]
Kaestner, Lars [2 ,3 ]
Wagner, Christian [2 ,4 ]
Quint, Stephan [2 ]
机构
[1] Lab Interdisciplinaire Phys CNRS UGA, F-38402 St Martin Dheres, France
[2] Saarland Univ, Dept Expt Phys, D-66041 Saarbrucken, Germany
[3] Saarland Univ, Theoret Med & Biosci, D-66424 Homburg, Germany
[4] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg
基金
欧盟地平线“2020”;
关键词
D O I
10.1063/5.0037336
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose a flow cytometry concept that combines a spatial optical modulation scheme and deep learning for lensless cell imaging. Inspired by auto-encoder techniques, an artificial neural network mimics the optical transfer function of a particular microscope and camera for certain types of cells once trained and reconstructs microscope images from simple waveforms that are generated by cells in microfluidic flow. This eventually enables the label-free detection of cells at high throughput while simultaneously providing their corresponding brightfield images. The present work focuses on the computational proof of concept of this method by mimicking the waveforms. Our suggested approach would require a minimum set of optical components such as a collimated light source, a slit mask, and a light sensor and could be easily integrated into a ruggedized lab-on-chip device. The method is benchmarked with a well-investigated dataset of red blood cell images.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope [J].
Adams, Jesse K. ;
Boominathan, Vivek ;
Avants, Benjamin W. ;
Vercosa, Daniel G. ;
Ye, Fan ;
Baraniuk, Richard G. ;
Robinson, Jacob T. ;
Veeraraghavan, Ashok .
SCIENCE ADVANCES, 2017, 3 (12)
[2]  
[Anonymous], 2010, P ICML 2010 P 27 INT
[3]   The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows [J].
Brust, M. ;
Aouane, O. ;
Thiebaud, M. ;
Flormann, D. ;
Verdier, C. ;
Kaestner, L. ;
Laschke, M. W. ;
Selmi, H. ;
Benyoussef, A. ;
Podgorski, T. ;
Coupier, G. ;
Misbah, C. ;
Wagner, C. .
SCIENTIFIC REPORTS, 2014, 4
[4]   Lensless Computational Imaging Technology Using Deep Convolutional Network [J].
Chen, Peidong ;
Su, Xiuqin ;
Liu, Muyuan ;
Zhu, Wenhua .
SENSORS, 2020, 20 (09)
[5]  
Diebold ED, 2013, NAT PHOTONICS, V7, P806, DOI [10.1038/NPHOTON.2013.245, 10.1038/nphoton.2013.245]
[6]   Fabrication of microfluidic devices using polydimethylsiloxane [J].
Friend, James ;
Yeo, Leslie .
BIOMICROFLUIDICS, 2010, 4 (02)
[7]   High-throughput single-microparticle imaging flow analyzer [J].
Goda, Keisuke ;
Ayazi, Ali ;
Gossett, Daniel R. ;
Sadasivam, Jagannath ;
Lonappan, Cejo K. ;
Sollier, Elodie ;
Fard, Ali M. ;
Hur, Soojung Claire ;
Adam, Jost ;
Murray, Coleman ;
Wang, Chao ;
Brackbill, Nora ;
Di Carlo, Dino ;
Jalali, Bahram .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11630-11635
[8]  
Güera D, 2018, 2018 15TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), P127
[9]   Cameraless high-throughput three-dimensional imaging flow cytometry [J].
Han, Yuanyuan ;
Tang, Rui ;
Gu, Yi ;
Zhang, Alex Ce ;
Cai, Wei ;
Castor, Violet ;
Cho, Sung Hwan ;
Alaynick, William ;
Lo, Yu-Hwa .
OPTICA, 2019, 6 (10) :1297-1304
[10]   Deep learning for real-time single-pixel video [J].
Higham, Catherine F. ;
Murray-Smith, Roderick ;
Padgett, Miles J. ;
Edgar, Matthew P. .
SCIENTIFIC REPORTS, 2018, 8