Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in RN

被引:32
作者
Wang, Youjun [1 ]
Yang, Jun [2 ]
Zhang, Yimin [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear elliptic equations; Critical exponential growth; Trudinger-Morser equality; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; EXISTENCE; CALCULUS;
D O I
10.1016/j.na.2009.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows the existence of nontrivial solutions for the quasilinear equations of the form -Delta(N)u + V(x)vertical bar u vertical bar(N-2)u - Delta(N)(u(2))u = h(u) in R-N, where Delta(N) is the N-Laplacian operator, V is a continuous function bounded from below away from zero and h(u) is a continuous function having critical exponential growth. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6157 / 6169
页数:13
相关论文
共 27 条
[11]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372
[12]  
DOO JM, 2003, ELECTRON J DIFFER EQ, V83, P1
[13]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[14]   A remark on least energy solutions in RN [J].
Jeanjean, L ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2399-2408
[15]   Nash-Moser methods for the solution of quasilinear Schrodinger equations [J].
Lange, H ;
Poppenberg, M ;
Teismann, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1399-1418
[16]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223
[17]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[18]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[19]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[20]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493