Total domination in planar graphs of diameter two

被引:6
|
作者
Henning, Michael A. [1 ]
McCoy, John [1 ]
机构
[1] Univ Kwazulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
Diameter; Planar graphs; Total domination; HYPERGRAPHS;
D O I
10.1016/j.disc.2009.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
MacGillivary and Seyffarth [G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory 22 (1996) 213-229] proved that planar graphs of diameter two have domination number at most three. Goddard and Henning [W. Goddard, M.A. Henning, Domination in planar graphs with small diameter,J. Graph Theory 40 (2002) 1-25] showed that there is a unique planar graph of diameter two with domination number three. It follows that the total domination number of a planar graph of diameter two is at most three. In this paper, we consider the problem of characterizing planargraphs with diameter two and total domination number three. We say that a graph satisfies the domination-cycle property if there is some minimum dominating set of the graph not contained in any induced 5-cycle. We characterize the planar graphs with diameter two and total domination number three that satisfy the domination-cycle property and show that there are exactly thirty-four such planar graphs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6181 / 6189
页数:9
相关论文
共 50 条
  • [21] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [22] NEIGHBOURHOOD TOTAL DOMINATION IN GRAPHS
    Arumugam, S.
    Sivagnanam, C.
    OPUSCULA MATHEMATICA, 2011, 31 (04) : 519 - 531
  • [23] Girth and Total Domination in Graphs
    Michael A. Henning
    Anders Yeo
    Graphs and Combinatorics, 2012, 28 : 199 - 214
  • [24] Total domination dot-critical graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 104 - 111
  • [25] Weak Total Domination in Graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2014, 94 : 221 - 236
  • [26] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [27] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [28] Total domination in maximal outerplanar graphs II
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE MATHEMATICS, 2016, 339 (03) : 1180 - 1188
  • [29] Total mixed domination in graphs
    Kazemi, Adel P.
    Kazemnejad, Farshad
    Moradi, Somayeh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 229 - 237
  • [30] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    ARS COMBINATORIA, 2012, 107 : 473 - 492