A dynamic matrix exponential via a matrix cylinder transformation

被引:3
作者
Cuchta, Tom [1 ]
Grow, David [2 ]
Wintz, Nick [3 ]
机构
[1] Fairmont State Univ, Dept Comp Sci & Math, Fairmont, WV 26554 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Lindenwood Univ, Div Math & Comp Sci, St Charles, MO 63301 USA
关键词
Time scales calculus; Matrix exponential; Cylinder transformation; CONSTANT MATRIX; TIME; SYSTEMS;
D O I
10.1016/j.jmaa.2019.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a new matrix exponential on time scales via a cylinder transformation with a component-wise, locally mu(Delta)-integrable square matrix subscript. Our resulting matrix function can be written in terms of the matrix exponential of a Lebesgue integral added to a logarithmic sum in terms of the gaps of a general time scale. Under strict commutativity conditions, we show our dynamic matrix exponential is equivalent to the one in the standard literature. Finally, we demonstrate that our matrix exponential satisfies a nonlinear dynamic integral equation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:733 / 751
页数:19
相关论文
共 29 条