A dynamic matrix exponential via a matrix cylinder transformation

被引:3
作者
Cuchta, Tom [1 ]
Grow, David [2 ]
Wintz, Nick [3 ]
机构
[1] Fairmont State Univ, Dept Comp Sci & Math, Fairmont, WV 26554 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Lindenwood Univ, Div Math & Comp Sci, St Charles, MO 63301 USA
关键词
Time scales calculus; Matrix exponential; Cylinder transformation; CONSTANT MATRIX; TIME; SYSTEMS;
D O I
10.1016/j.jmaa.2019.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a new matrix exponential on time scales via a cylinder transformation with a component-wise, locally mu(Delta)-integrable square matrix subscript. Our resulting matrix function can be written in terms of the matrix exponential of a Lebesgue integral added to a logarithmic sum in terms of the gaps of a general time scale. Under strict commutativity conditions, we show our dynamic matrix exponential is equivalent to the one in the standard literature. Finally, we demonstrate that our matrix exponential satisfies a nonlinear dynamic integral equation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:733 / 751
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 2013, Matrix Analysis
[2]  
[Anonymous], 2008, Functions of matrices
[3]  
[Anonymous], APPL MATH COMPUT
[4]  
Bernstein D.S., 2009, Matrix Mathematics, DOI DOI 10.1515/9781400833344
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[6]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[7]   Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral;: application to the calculus of Δ-antiderivatives [J].
Cabada, A ;
Vivero, DR .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (1-2) :194-207
[8]   Criterions for absolute continuity on time scales [J].
Cabada, A ;
Vivero, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (11) :1013-1028
[9]   New definitions of exponential, hyperbolic and trigonometric functions on time scales [J].
Cieslinski, Jan L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :8-22
[10]   Transition matrix and generalized matrix exponential via the Peano-Baker series [J].
Dacunha, JJ .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (15) :1245-1264