Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs

被引:29
作者
Almeida, D. S.
Silva, C. R. M.
Nono, M. C. A.
Cairo, C. A. A.
机构
[1] Comando Geral Tecnol Aerosp, Div Mat AMR CTA, BR-12228904 Sao Jose Dos Campos, SP, Brazil
[2] Inst Nacl Pesquisas Espaciais, Lab Assoc Mat & Sensores, BR-12227010 Sao Jose Dos Campos, SP, Brazil
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2007年 / 443卷 / 1-2期
基金
巴西圣保罗研究基金会;
关键词
EB-PVD; TBC; ZrO2-Y2O3; ZrO2-Y2O3-Nb2O5; thermal conductivity;
D O I
10.1016/j.msea.2006.09.072
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A technique used to improve the life cycle and/or the working temperature of the turbine blades uses ceramic coatings over metallic material applied by electron beam-physical vapor deposition (EB-PVD). The most usual material for this application is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO, system, can reduce thermal conductivity. The purpose of this work is to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. This new formulation will, in the future, be able to become an alternative to the composition currently used by the aerospace field in EB-PVD thermal barrier coatings (TBC). A significant reduction of the thermal conductivity, measured by laser flash technique, in the zirconia ceramic coatings co-doped with yttria and niobia when compared with zirconia-yttria coatings was observed. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 26 条
[1]   Electron beam-physical vapour deposition of zirconia co-doped with yttria and niobia [J].
Almeida, DS ;
Silva, CRM ;
Nono, MCA ;
Cairo, CAA .
ADVANCED POWDER TECHNOLOGY IV, 2005, 498-499 :453-458
[2]   EB-PVD TBCs of zirconia co-doped with yttria and niobia, a microstructural investigation [J].
Almeida, DS ;
Silva, CRM ;
Nono, MCA ;
Cairo, CAA .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (08) :2827-2833
[3]  
Beddoes J., 1999, INTRO STAINLESS STEE, V3rd ed., P315
[4]  
COUTO P, 2003, METROLOGIA 2003
[5]  
Czek N., 1999, SURF COAT TECH, V113, P157
[6]   NEW THERMAL-DIFFUSIVITY IDENTIFICATION APPLIED TO FLASH METHOD [J].
DEGIOVANNI, A ;
LAURENT, M .
REVUE DE PHYSIQUE APPLIQUEE, 1986, 21 (03) :229-237
[7]   Mechanics-based scaling laws for the durability of thermal barrier coatings [J].
Evans, AG ;
He, MY ;
Hutchinson, JW .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (3-4) :249-271
[8]   Emerging technology in surface modification of light metals [J].
Funatani, K .
SURFACE & COATINGS TECHNOLOGY, 2000, 133 :264-272
[9]   Progress in coatings for gas turbine airfoils [J].
Goward, GW .
SURFACE & COATINGS TECHNOLOGY, 1998, 108 (1-3) :73-79
[10]   Microstructure investigation on gradient porous thermal barrier coating prepared by EB-PVD [J].
Guo, HB ;
Bi, XF ;
Gong, SK ;
Xu, HB .
SCRIPTA MATERIALIA, 2001, 44 (04) :683-687