ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS

被引:1
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Paulo, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
abstract parabolic equations; continuation of solutions; critical exponents; DAMPED WAVE-EQUATIONS; INTERPOLATION; BOUNDARY;
D O I
10.1017/S001309151400039X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces E-sigma, sigma is an element of [0,1 + mu). We consider a suitable E1+epsilon-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+epsilon-solution and a situation when the E1+epsilon-norm of the solution blows up, in which case a piecewise E1+epsilon-solution is constructed.
引用
收藏
页码:17 / 55
页数:39
相关论文
共 50 条
  • [41] NON-AUTONOMOUS IMPULSIVE CAUCHY PROBLEMS OF PARABOLIC TYPE INVOLVING NONLOCAL INITIAL CONDITIONS
    Wang, Rong-Nian
    Ezzinbi, Khalil
    Zhu, Peng-Xian
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (02) : 275 - 299
  • [42] Non-autonomous equations with unpredictable solutions
    Akhmet, Marat
    Fen, Mehmet Onur
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 657 - 670
  • [43] ON PERIODIC SOLUTIONS OF NON-AUTONOMOUS SYSTEMES
    AIZENGEN.PG
    VAINBERG, MM
    DOKLADY AKADEMII NAUK SSSR, 1965, 165 (02): : 255 - &
  • [44] Autonomous and Non-autonomous Unbounded Attractors in Evolutionary Problems
    Banaskiewicz, Jakub
    Carvalho, Alexandre N.
    Garcia-Fuentes, Juan
    Kalita, Piotr
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3481 - 3534
  • [45] Uniform stability of a non-autonomous semilinear Bresse system with memory
    Araújo R.O.
    Marinho S.S.
    Prates Filho J.S.
    Applied Mathematics and Computation, 2021, 387
  • [46] Uniform stability of a non-autonomous semilinear Bresse system with memory
    Araujo, Rawlilson O.
    Marinho, Sheyla S.
    Filho, Julio S. Prates
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387
  • [47] Non-autonomous semilinear evolution equations with almost sectorial operators
    Alexandre N. Carvalho
    Tomasz Dlotko
    Marcelo J. D. Nascimento
    Journal of Evolution Equations, 2008, 8 : 631 - 659
  • [48] HOLDER REGULARITY FOR NON-AUTONOMOUS ABSTRACT PARABOLIC EQUATIONS
    DAPRATO, G
    SINESTRARI, E
    ISRAEL JOURNAL OF MATHEMATICS, 1982, 42 (1-2) : 1 - 19
  • [49] ON EXPONENTIAL STABILITY OF NON-AUTONOMOUS STOCHASTIC SEMILINEAR EVOLUTION EQUATIONS
    夏学文
    刘凯
    Acta Mathematica Scientia, 2002, (02) : 178 - 188
  • [50] Uniform attractors for non-autonomous parabolic equations with delays
    Li, Jin
    Huang, Jianhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2194 - 2209