ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS

被引:1
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Paulo, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
abstract parabolic equations; continuation of solutions; critical exponents; DAMPED WAVE-EQUATIONS; INTERPOLATION; BOUNDARY;
D O I
10.1017/S001309151400039X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces E-sigma, sigma is an element of [0,1 + mu). We consider a suitable E1+epsilon-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+epsilon-solution and a situation when the E1+epsilon-norm of the solution blows up, in which case a piecewise E1+epsilon-solution is constructed.
引用
收藏
页码:17 / 55
页数:39
相关论文
共 50 条
  • [31] Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations
    P. T. Thuy
    N. M. Tri
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 279 - 298
  • [32] DYNAMICS OF NON-AUTONOMOUS FRACTIONAL REACTION-DIFFUSION EQUATIONS ON RN DRIVEN BY MULTIPLICATIVE NOISE
    Zhu, Kaixuan
    Li, Ji
    Xie, Yongqin
    Zhang, Mingji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (10): : 5681 - 5705
  • [33] Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity
    Filippas, S
    Herrero, MA
    Velázquez, JJL
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004): : 2957 - 2982
  • [34] Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations
    Thuy, P. T.
    Tri, N. M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (03): : 279 - 298
  • [35] Nonexistence of Global Positive Solutions of Weakly Coupled Systems of Semilinear Parabolic Equations with Time-Periodic Coefficients
    Bagyrov, Sh G.
    DIFFERENTIAL EQUATIONS, 2020, 56 (06) : 721 - 733
  • [36] An adaptive method for computing invariant manifolds in non-autonomous, three-dimensional dynamical systems
    Branicki, Michal
    Wiggins, Stephen
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) : 1625 - 1657
  • [37] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [38] CLASSICAL SOLUTIONS OF PARABOLIC INITIAL-BOUNDARY-VALUE PROBLEMS AND HORMANDER SPACES
    Los', V. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 68 (09) : 1412 - 1423
  • [39] Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities
    Gisèle Ruiz Goldstein
    Jerome A. Goldstein
    Ismail Kömbe
    Reyhan Tellioğlu
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2927 - 2942
  • [40] Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian
    Benedikt, Jiri
    Girg, Petr
    Kotrla, Lukas
    Takac, Peter
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 991 - 1009