ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS

被引:1
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Paulo, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
abstract parabolic equations; continuation of solutions; critical exponents; DAMPED WAVE-EQUATIONS; INTERPOLATION; BOUNDARY;
D O I
10.1017/S001309151400039X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces E-sigma, sigma is an element of [0,1 + mu). We consider a suitable E1+epsilon-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+epsilon-solution and a situation when the E1+epsilon-norm of the solution blows up, in which case a piecewise E1+epsilon-solution is constructed.
引用
收藏
页码:17 / 55
页数:39
相关论文
共 50 条
  • [31] On non-autonomous evolutionary problems
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    Wehowski, Maria
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (04) : 751 - 776
  • [32] Large time behaviour of solutions to a class of non-autonomous, degenerate parabolic equations
    F. Ragnedda
    S. Vernier Piro
    V. Vespri
    Mathematische Annalen, 2010, 348 : 779 - 795
  • [33] Asymptotic time behaviour for non-autonomous degenerate parabolic problems with forcing term
    Ragnedda, F.
    Piro, S. Vernier
    Vespri, V.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2316 - E2321
  • [34] Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs
    Tambue, Antoine
    Mukam, Jean Daniel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 714 - 727
  • [35] Well-posedness of non-autonomous semilinear systems
    Schmid, Jochen
    Dashkovskiy, Sergey
    Jacob, Birgit
    Laasri, Hafida
    IFAC PAPERSONLINE, 2019, 52 (16): : 216 - 220
  • [36] Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains
    Lancelotti, Sergio
    Molle, Riccardo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [37] Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains
    Sergio Lancelotti
    Riccardo Molle
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [38] C1,α-solutions to non-autonomous anisotropic variational problems
    Michael Bildhauer
    Martin Fuchs
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 309 - 340
  • [39] C1,α-solutions to non-autonomous anisotropic variational problems
    Bildhauer, M
    Fuchs, M
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) : 309 - 340
  • [40] INFINITELY MANY SOLUTIONS AND MORSE INDEX FOR NON-AUTONOMOUS ELLIPTIC PROBLEMS
    Korman, Philip
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 31 - 46