ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS

被引:1
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Paulo, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
abstract parabolic equations; continuation of solutions; critical exponents; DAMPED WAVE-EQUATIONS; INTERPOLATION; BOUNDARY;
D O I
10.1017/S001309151400039X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces E-sigma, sigma is an element of [0,1 + mu). We consider a suitable E1+epsilon-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+epsilon-solution and a situation when the E1+epsilon-norm of the solution blows up, in which case a piecewise E1+epsilon-solution is constructed.
引用
收藏
页码:17 / 55
页数:39
相关论文
共 50 条
  • [1] SINGULARLY NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS WITH CRITICAL EXPONENTS
    Carvalho, Alexandre N.
    Nascimento, Marcelo J. D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (03): : 449 - 471
  • [2] Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities
    Carvalho, AN
    Cholewa, JW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (02) : 557 - 578
  • [3] Dynamics of non-autonomous parabolic problems with subcritical and critical nonlinearities
    Li, Xiaojun
    Ren, Li
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (04): : 540 - 564
  • [4] Blow-up in non-autonomous semilinear pseudoparabolic equations
    Khomrutai, Sujin
    Kitisin, Nataphan
    SCIENCEASIA, 2014, 40 (05): : 371 - 374
  • [5] Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations
    Freitas, Mirelson M.
    Kalita, Piotr
    Langa, Jose A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 1886 - 1945
  • [6] Solvability of initial boundary value problems for non-autonomous evolution equations
    Pyatkov, S. G.
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 39 - 58
  • [7] SEMILINEAR PARABOLIC PROBLEMS ON MANIFOLDS AND APPLICATIONS TO THE NON-COMPACT YAMABE PROBLEM
    Zhang, Qi S.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [8] FRACTIONAL APPROXIMATIONS OF ABSTRACT SEMILINEAR PARABOLIC PROBLEMS
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Nascimento, Marcelo J. D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (11): : 4221 - 4255
  • [9] Cauchy problems of semilinear pseudo-parabolic equations
    Cao, Yang
    Yin, Jingxue
    Wang, Chunpeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) : 4568 - 4590
  • [10] ABSTRACT PARABOLIC PROBLEMS WITH NON-LIPSCHITZ CRITICAL NONLINEARITIES
    Was, Konrad J.
    COLLOQUIUM MATHEMATICUM, 2010, 121 (02) : 203 - 223