ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS

被引:1
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Paulo, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
abstract parabolic equations; continuation of solutions; critical exponents; DAMPED WAVE-EQUATIONS; INTERPOLATION; BOUNDARY;
D O I
10.1017/S001309151400039X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces E-sigma, sigma is an element of [0,1 + mu). We consider a suitable E1+epsilon-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+epsilon-solution and a situation when the E1+epsilon-norm of the solution blows up, in which case a piecewise E1+epsilon-solution is constructed.
引用
收藏
页码:17 / 55
页数:39
相关论文
共 50 条
  • [1] SINGULARLY NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS WITH CRITICAL EXPONENTS
    Carvalho, Alexandre N.
    Nascimento, Marcelo J. D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (03): : 449 - 471
  • [2] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Belluzi, Maykel
    Bezerra, Flank D. M.
    Nascimento, Marcelo J. D.
    Santos, Lucas A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):
  • [3] PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION
    Li, Xin
    Sun, Chunyou
    Zhou, Feng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) : 511 - 528
  • [4] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Maykel Belluzi
    Flank D. M. Bezerra
    Marcelo J. D. Nascimento
    Lucas A. Santos
    Bulletin of the Brazilian Mathematical Society, New Series, 2024, 55
  • [5] The well-posedness of a parabolic non-autonomous semilinear equation
    Fkirine, Mohamed
    Hadd, Said
    IFAC PAPERSONLINE, 2022, 55 (12): : 198 - 201
  • [6] AN EXPONENTIAL INTEGRATOR FOR NON-AUTONOMOUS PARABOLIC PROBLEMS
    Hipp, David
    Hochbruck, Marlis
    Ostermann, Alexander
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 497 - 511
  • [7] Bounded solutions for non-autonomous parabolic equations
    Zhang, WN
    Stewart, I
    DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (02): : 109 - 120
  • [8] Pullback Attractors for a Non-Autonomous Semilinear Degenerate Parabolic Equation on ℝN
    Binh N.D.
    Thang N.N.
    Thuy L.T.
    Acta Mathematica Vietnamica, 2016, 41 (2) : 183 - 199
  • [9] On oscillating radial solutions for non-autonomous semilinear elliptic equations
    Al Jebawy, H.
    Ibrahim, H.
    Salloum, Z.
    AIMS MATHEMATICS, 2024, 9 (06): : 15190 - 15201
  • [10] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC EQUATIONS WITH INFINITE DELAY
    Le Van Hieu
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (03): : 289 - 308