Tensors for Data Mining and Data Fusion: Models, Applications, and Scalable Algorithms

被引:257
作者
Papalexakis, Evangelos E. [1 ]
Faloutsos, Christos [2 ]
Sidiropoulos, Nicholas D. [3 ,4 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, 355 Winston Chung Hall, Riverside, CA 92521 USA
[2] Carnegie Mellon Univ, Dept Comp Sci, GHC 8019,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Univ Minnesota, Dept Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Dept ECE, Digital Technol Ctr, 200 Union St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Tensors; tensor decomposition; tensor factorization; multi-aspect data; multi-way analysis; LEAST-SQUARES ALGORITHM; MULTILINEAR DECOMPOSITION; LINK PREDICTION; PARAFAC; MATRIX; UNIQUENESS; FACTORIZATION; COMPONENTS; RANK; CANDECOMP/PARAFAC;
D O I
10.1145/2915921
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tensors and tensor decompositions are very powerful and versatile tools that can model a wide variety of heterogeneous, multiaspect data. As a result, tensor decompositions, which extract useful latent information out of multiaspect data tensors, have witnessed increasing popularity and adoption by the data mining community. In this survey, we present some of the most widely used tensor decompositions, providing the key insights behind them, and summarizing them from a practitioner's point of view. We then provide an overview of a very broad spectrum of applications where tensors have been instrumental in achieving state-of-the-art performance, ranging from social network analysis to brain data analysis, and from web mining to healthcare. Subsequently, we present recent algorithmic advances in scaling tensor decompositions up to today's big data, outlining the existing systems and summarizing the key ideas behind them. Finally, we conclude with a list of challenges and open problems that outline exciting future research directions.
引用
收藏
页数:44
相关论文
共 152 条
  • [1] Acar E, 2005, LECT NOTES COMPUT SC, V3495, P256
  • [2] Unsupervised Multiway Data Analysis: A Literature Survey
    Acar, Evrim
    Yener, Buelent
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (01) : 6 - 20
  • [3] Multiway analysis of epilepsy tensors
    Acar, Evrim
    Aykut-Bingol, Canan
    Bingol, Haluk
    Bro, Rasmus
    Yener, Buelent
    [J]. BIOINFORMATICS, 2007, 23 (13) : I10 - I18
  • [4] Structure-revealing data fusion
    Acar, Evrim
    Papalexakis, Evangelos E.
    Gurdeniz, Gozde
    Rasmussen, Morten A.
    Lawaetz, Anders J.
    Nilsson, Mathias
    Bro, Rasmus
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [5] Acar E, 2013, IEEE ENG MED BIO, P6023, DOI 10.1109/EMBC.2013.6610925
  • [6] Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics
    Acar, Evrim
    Gurdeniz, Gozde
    Rasmussen, Morten A.
    Rago, Daniela
    Dragsted, Lars O.
    Bro, Rasmus
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 1 - 8
  • [7] Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship
    Acar, Evrim
    Plopper, George E.
    Yener, Buelent
    [J]. PLOS ONE, 2012, 7 (03):
  • [8] Scalable tensor factorizations for incomplete data
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    Morup, Morten
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) : 41 - 56
  • [9] A scalable optimization approach for fitting canonical tensor decompositions
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    [J]. JOURNAL OF CHEMOMETRICS, 2011, 25 (02) : 67 - 86
  • [10] Link Prediction on Evolving Data using Matrix and Tensor Factorizations
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 262 - +