Label-informed Graph Structure Learning for Node Classification

被引:0
作者
Wang, Liping [1 ,2 ]
Hu, Fenyu [1 ,2 ]
Wu, Shu [1 ,2 ,3 ]
Wang, Liang [1 ,2 ]
机构
[1] Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Chinese Acad Sci, Artificial Intelligence Res, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021 | 2021年
基金
中国国家自然科学基金;
关键词
graph neural network; structure learning; node classification;
D O I
10.1145/3459637.3482129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
引用
收藏
页码:3488 / 3492
页数:5
相关论文
共 17 条
  • [1] Cheminformatics in Natural Product-Based Drug Discovery
    Chen, Ya
    Kirchmair, Johannes
    [J]. MOLECULAR INFORMATICS, 2020, 39 (12)
  • [2] Defferrard M, 2016, ADV NEUR IN, V29
  • [3] Franceschi L, 2019, PR MACH LEARN RES, V97
  • [4] GraphAIR: Graph representation learning with neighborhood aggregation and interaction
    Hu, Fenyu
    Zhu, Yanqiao
    Wu, Shu
    Huang, Weiran
    Wang, Liang
    Tan, Tieniu
    [J]. PATTERN RECOGNITION, 2021, 112
  • [5] Hu Fenyu, 2019, IJCAI
  • [6] Jin W., 2020, P 26 ACM SIGKDD INT
  • [7] Kingma DP, 2015, C TRACK P
  • [8] Kipf Thomas N., 2017, RNAT C LEARN REPR
  • [9] Pei H., 2020, INT C LEARN REPR, P1
  • [10] Collective Classification in Network Data
    Sen, Prithviraj
    Namata, Galileo
    Bilgic, Mustafa
    Getoor, Lise
    Gallagher, Brian
    Eliassi-Rad, Tina
    [J]. AI MAGAZINE, 2008, 29 (03) : 93 - 106