Predicting football results using Bayesian nets and other machine learning techniques

被引:80
|
作者
Joseph, A. [1 ]
Fenton, N. E. [1 ]
Neil, M. [1 ]
机构
[1] Queen Mary Univ London, Comp Sci Dept, London, England
关键词
Bayesian nets; machine learning; football;
D O I
10.1016/j.knosys.2006.04.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian networks (BNs) provide a means for representing, displaying, and making available in a usable form the knowledge of experts in a given field. In this paper, we look at the performance of an expert constructed BN compared with other machine learning (ML) techniques for predicting the outcome (win, lose, or draw) of matches played by Tottenham Hotspur Football Club. The period under study was 1995-1997 - the expert BN was constructed at the start of that period, based almost exclusively on subjective judgement. Our objective was to determine retrospectively the comparative accuracy of the expert BN compared to some alternative ML models that were built using data from the two-year period. The additional ML techniques considered were: MC4, a decision tree learner; Naive Bayesian learner; Data Driven Bayesian (a BN whose structure and node probability tables are learnt entirely from data); and a K-nearest neighbour learner. The results show that the expert BN is generally superior to the other techniques for this domain in predictive accuracy. The results are even more impressive for BNs given that, in a number of key respects, the study assumptions place them at a disadvantage. For example, we have assumed that the BN prediction is 'incorrect' if a BN predicts more than one outcome as equally most likely (whereas, in fact, such a prediction would prove valuable to somebody who could place an 'each way' bet on the outcome). Although the expert BN has now long been irrelevant (since it contains variables relating to key players who have retired or left the club) the results here tend to confirm the excellent potential of BNs when they are built by a reliable domain expert. The ability to provide accurate predictions without requiring much learning data are an obvious bonus in any domain where data are scarce. Moreover, the BN was relatively simple for the expert to build and its structure could be used again in this and similar types of problems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:544 / 553
页数:10
相关论文
共 50 条
  • [1] Tactically Maximize Game Advantage by Predicting Football Substitutions Using Machine Learning
    Mohandas, Alex
    Ahsan, Mominul
    Haider, Julfikar
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
  • [2] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [3] Machine Learning for Understanding and Predicting Injuries in Football
    Majumdar, Aritra
    Bakirov, Rashid
    Hodges, Dan
    Scott, Suzanne
    Rees, Tim
    SPORTS MEDICINE-OPEN, 2022, 8 (01)
  • [4] Predicting Power Consumption Using Machine Learning Techniques
    Allal, Zaid
    Noura, Hassan
    Salman, Ola
    Vernier, Flavien
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1522 - 1527
  • [5] Predicting Blood Donors Using Machine Learning Techniques
    Christian Kauten
    Ashish Gupta
    Xiao Qin
    Glenn Richey
    Information Systems Frontiers, 2022, 24 : 1547 - 1562
  • [6] Predicting Employee Attrition Using Machine Learning Techniques
    Fallucchi, Francesca
    Coladangelo, Marco
    Giuliano, Romeo
    De Luca, Ernesto William
    COMPUTERS, 2020, 9 (04) : 1 - 17
  • [7] Predicting performance of swimmers using machine learning techniques
    Guerra-Salcedo, Cesar M.
    Janek, Libor
    Perez-Ortega, Joaquin
    Pazos-Rangel, Rodolfo A.
    WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 3, 2005, : 146 - 148
  • [8] Predicting Blood Donors Using Machine Learning Techniques
    Kauten, Christian
    Gupta, Ashish
    Qin, Xiao
    Richey, Glenn
    INFORMATION SYSTEMS FRONTIERS, 2022, 24 (05) : 1547 - 1562
  • [9] Predicting Employee Turnover Using Machine Learning Techniques
    Benabou, Adil
    Touhami, Fatima
    Sabri, My Abdelouahed
    ACTA INFORMATICA PRAGENSIA, 2025, 14 (01) : 112 - 127
  • [10] Predicting Solar Irradiance Using Machine Learning Techniques
    Javed, Abeera
    Kasi, Bakhtiar Khan
    Khan, Faisal Ahmad
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1458 - 1462