We present a method, polarized Raman (PR) spectroscopy combined with atomic force microscopy (AFM), to characterize in situ and nondestructively the structure and the physical properties of individual nanostructures. PR-AFM applied to individual ZnO nanobelts reveals the interplay between growth direction, point defects, morphology, and mechanical properties of these nanostructures. In particular, we find that the presence of point defects can decrease the elastic modulus of the nanobelts by one order of magnitude. More generally, PR-AFM can be extended to different types of nanostructures, which can be in as-fabricated devices.