Bergman kernels for rectangular domains and multiperiodic functions in Clifford analysis

被引:19
作者
Constales, D [1 ]
Krausshar, RS [1 ]
机构
[1] Ghent Univ, Dept Math Anal, B-9000 Ghent, Belgium
关键词
Bergman kernels; Clifford analysis; special functions;
D O I
10.1002/mma.385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider rectangular domains in real Euclidean spaces of dimension at least 2, where the sides can be finite, semi-infinite, or fully infinite. The Bergman reproducing kernel for the space of monogenic and square integrable functions on such a domain is obtained in closed form as a finite sum of monogenic multiperiodic functions. The reproducing property leads to an estimate of the first derivative of the single-periodic cotangent function in terms of the classical real-valued Eisenstein series. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1509 / 1526
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1994, COMP VARIAB
[2]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[3]  
Bergman S., 1970, The kernel function and conformal mapping
[4]  
BOONE B, 1992, THESIS RWTH AACHEN
[5]  
BRACKX F, 1993, GENERALIZED FUNCTIONS AND THEIR APPLICATIONS, P1
[6]  
Cnops J., 1993, THESIS RIJKSUNIVERSI
[7]  
Constales D., 1989, THESIS RIJKSUNIVERSI
[8]  
CONSTALES D, IN PRESS J LONDON MA
[9]  
Constales D., 2002, Complex Var. Theory Appl., V47, P349
[10]  
CONSTALES D, IN PRESS FORUM MATH