Computation of Gauss-Kronrod quadrature rules

被引:106
作者
Calvetti, D [1 ]
Golub, GH
Gragg, WB
Reichel, L
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] USN, Postgrad Sch, Dept Math, Monterey, CA 93943 USA
关键词
Jacobi matrix; inverse eigenvalue problem; divide-and-conquer algorithm; generalized Gauss-Kronrod rule;
D O I
10.1090/S0025-5718-00-01174-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently Laurie presented a new algorithm for the computation of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. This algorithm first determines a symmetric tridiagonal matrix of order 2n + 1 from certain mixed moments, and then computes a partial spectral factorization. We describe a new algorithm that does not require the entries of the tridiagonal matrix to be determined, and thereby avoids computations that can be sensitive to perturbations. Our algorithm uses the consolidation phase of a divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. We also discuss how the algorithm can be applied to compute Kronrod extensions of Gauss-Radau and Gauss-Lobatto quadrature rules. Throughout the paper we emphasize how the structure of the algorithm makes efficient implementation on parallel computers possible. Numerical examples illustrate the performance of the algorithm.
引用
收藏
页码:1035 / 1052
页数:18
相关论文
共 16 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]   A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS [J].
BOLEY, D ;
GOLUB, GH .
INVERSE PROBLEMS, 1987, 3 (04) :595-622
[3]  
BORGES CF, 1993, NUMERICAL LINEAR ALGEBRA, P11
[4]  
Bull J. M., 1994, Advances in Computational Mathematics, V2, P357, DOI 10.1007/BF02521604
[5]   On an inverse eigenproblem for Jacobi matrices [J].
Calvetti, D ;
Reichel, L .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (01) :11-20
[6]   ON GENERATING ORTHOGONAL POLYNOMIALS [J].
GAUTSCHI, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03) :289-317
[7]  
Gautschi Walter, 1988, NUMERICAL METHODS AP, VIII, P39
[8]  
GLADWELL I, 1987, NUMERICAL INTEGRATIO, P231
[9]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[10]   CALCULATION OF GAUSS QUADRATURES WITH MULTIPLE FREE AND FIXED KNOTS [J].
GOLUB, GH ;
KAUTSKY, J .
NUMERISCHE MATHEMATIK, 1983, 41 (02) :147-163