Potential for High Fidelity Global Mapping of Common Inland Water Quality Products at High Spatial and Temporal Resolutions Based on a Synthetic Data and Machine Learning Approach

被引:22
作者
Kravitz, Jeremy [1 ,2 ]
Matthews, Mark [3 ]
Lain, Lisl [1 ]
Fawcett, Sarah [1 ]
Bernard, Stewart [4 ]
机构
[1] Univ Cape Town, Dept Oceanog, Cape Town, South Africa
[2] NASA, Biospher Sci Branch, Ames Res Ctr, Mountain View, CA 94035 USA
[3] CyanoLakes Pty Ltd, Cape Town, South Africa
[4] CSIR, Earth Syst Earth Observat Div, Cape Town, South Africa
关键词
eutrophication; Earth observation; water quality; inland waters; machine learning; radiative transfer modeling; cyanobacteria; optics; INDUCED CHLOROPHYLL FLUORESCENCE; BIOOPTICAL PARAMETER VARIABILITY; TO-NOISE RATIO; COASTAL WATERS; CYANOBACTERIAL BLOOMS; REMOTE ESTIMATION; A CONCENTRATION; ABSORPTION-COEFFICIENT; CONSTITUENT RETRIEVAL; VERTICAL-DISTRIBUTION;
D O I
10.3389/fenvs.2021.587660
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There is currently a scarcity of paired in-situ aquatic optical and biogeophysical data for productive inland waters, which critically hinders our capacity to develop and validate robust retrieval models for Earth Observation applications. This study aims to address this limitation through the development of a novel synthetic dataset of top-of-atmosphere and bottom-of-atmosphere reflectances, which is the first to encompass the immense natural optical variability present in inland waters. Novel aspects of the synthetic dataset include: 1) physics-based, two-layered, size- and type-specific phytoplankton inherent optical properties (IOPs) for mixed eukaryotic/cyanobacteria assemblages; 2) calculations of mixed assemblage chlorophyll-a (chl-a) fluorescence; 3) modeled phycocyanin concentration derived from assemblage-based phycocyanin absorption; 4) and paired sensor-specific top-of-atmosphere reflectances, including optically extreme cases and the contribution of green vegetation adjacency. The synthetic bottom-of-atmosphere reflectance spectra were compiled into 13 distinct optical water types similar to those discovered using in-situ data. Inspection showed similar relationships of concentrations and IOPs to those of natural waters. This dataset was used to calculate typical surviving water-leaving signal at top-of-atmosphere, and used to train and test four state-of-the-art machine learning architectures for multi-parameter retrieval and cross-sensor capability. Initial results provide reliable estimates of water quality parameters and IOPs over a highly dynamic range of water types, at various spectral and spatial sensor resolutions. The results of this work represent a significant leap forward in our capacity for routine, global monitoring of inland water quality.
引用
收藏
页数:23
相关论文
共 122 条
[81]   A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product [J].
Moore, Timothy S. ;
Campbell, Janet W. ;
Dowell, Mark D. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (11) :2424-2430
[82]   A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms [J].
Moore, TS ;
Campbell, JW ;
Feng, H .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1764-1776
[83]  
Moses Sheela A., 2015, Lakes & Reservoirs Research and Management, V20, P285, DOI 10.1111/lre.12110
[84]   Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges [J].
Moses, W. J. ;
Gitelson, A. A. ;
Berdnikov, S. ;
Povazhnyy, V. .
ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (04)
[85]   Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions [J].
Mouw, Colleen B. ;
Greb, Steven ;
Aurin, Dirk ;
DiGiacomo, Paul M. ;
Lee, Zhongping ;
Twardowski, Michael ;
Binding, Caren ;
Hu, Chuanmin ;
Ma, Ronghua ;
Moore, Timothy ;
Moses, Wesley ;
Craig, Susanne E. .
REMOTE SENSING OF ENVIRONMENT, 2015, 160 :15-30
[86]   Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems [J].
Muller-Karger, Frank E. ;
Hestir, Erin ;
Ade, Christiana ;
Turpie, Kevin ;
Roberts, Dar A. ;
Siegel, David ;
Miller, Robert J. ;
Humm, David ;
Izenberg, Noam ;
Keller, Mary ;
Morgan, Frank ;
Frouin, Robert ;
Dekker, Arnold G. ;
Gardner, Royal ;
Goodman, James ;
Schaeffer, Blake ;
Franz, Bryan A. ;
Pahlevan, Nima ;
Mannino, Antonio G. ;
Concha, Javier A. ;
Ackleson, Steven G. ;
Cavanaugh, Kyle C. ;
Romanou, Anastasia ;
Tzortziou, Maria ;
Boss, Emmanuel S. ;
Pavlick, Ryan ;
Freeman, Anthony ;
Rousseaux, Cecile S. ;
Dunne, John ;
Long, Matthew C. ;
Klein, Eduardo ;
McKinley, Galen A. ;
Goes, Joachim ;
Letelier, Ricardo ;
Kavanaugh, Maria ;
Roffer, Mitchell ;
Bracher, Astrid ;
Arrigo, Kevin R. ;
Dierssen, Heidi ;
Zhang, Xiaodong ;
Davis, Frank W. ;
Best, Ben ;
Guralnick, Robert ;
Moisan, John ;
Sosik, Heidi M. ;
Kudela, Raphael ;
Mouw, Colleen B. ;
Barnard, Andrew H. ;
Palacios, Sherry ;
Roesler, Collin .
ECOLOGICAL APPLICATIONS, 2018, 28 (03) :749-760
[87]   Review of constituent retrieval in optically deep and complex waters from satellite imagery [J].
Odermatt, Daniel ;
Gitelson, Anatoly ;
Brando, Vittorio Ernesto ;
Schaepman, Michael .
REMOTE SENSING OF ENVIRONMENT, 2012, 118 :116-126
[88]   Determination of Phycocyanin from Space-A Bibliometric Analysis [J].
Ogashawara, Igor .
REMOTE SENSING, 2020, 12 (03)
[89]   Bio-optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements [J].
Organelli, Emanuele ;
Claustre, Herve ;
Bricaud, Annick ;
Barbieux, Marie ;
Uitz, Julia ;
D'Ortenzio, Fabrizio ;
Dall'Olmo, Giorgio .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (05) :3543-3564
[90]   Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach [J].
Pahlevan, Nima ;
Smith, Brandon ;
Schalles, John ;
Binding, Caren ;
Cao, Zhigang ;
Ma, Ronghua ;
Alikas, Krista ;
Kangro, Kersti ;
Gurlin, Daniela ;
Nguyen Ha ;
Matsushita, Bunkei ;
Moses, Wesley ;
Greb, Steven ;
Lehmann, Moritz K. ;
Ondrusek, Michael ;
Oppelt, Natascha ;
Stumpf, Richard .
REMOTE SENSING OF ENVIRONMENT, 2020, 240