Low-Power Double-Gate ZnO TFT Active Rectifier

被引:10
|
作者
Sun, Kaige G. [1 ]
Choi, Kyusun [2 ]
Jackson, Thomas N. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, Ctr Thin Film Devices, Mat Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Active rectifier; thin film transistors; TFT; double gate; plasma-enhanced atomic layer deposition; zinc oxide; ZnO TFTs; oxide TFTs; oxide semiconductor transistors; energy harvesting; ENERGY;
D O I
10.1109/LED.2016.2527832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter reports a low-power full-wave active rectifier using double-gate ZnO thin-film transistors (TFTs). The active rectifier is designed to operate at low voltage and low power to allow integration with mechanical energy harvesters. Double-gate TFTs allow the TFT threshold voltage to be tuned and enable enhancement/depletion-mode circuits with high gain and low power consumption. The active rectifier is designed to work with input voltage as small as 200-mV peak-to-peak and frequencies up to 4 Hz. The active rectifier circuit includes 12 TFTs and operates with a power consumption <150 nW. The low fabrication temperature for the active rectifier circuit allows direct and distributed integration with micro-electromechanical energy harvesters.
引用
收藏
页码:426 / 428
页数:3
相关论文
共 50 条
  • [21] An 11.8 nA ultra-low power active diode using a hysteresis common gate comparator for low-power energy harvesting systems
    Matsumoto K.
    Asano H.
    Nakazawa Y.
    Kuroki N.
    Numa M.
    Maida O.
    Kanemoto D.
    Hirose T.
    IEICE Electronics Express, 2020, 17 (11) : 1 - 6
  • [22] An 11.8 nA ultra-low power active diode using a hysteresis common gate comparator for low-power energy harvesting systems
    Matsumoto, Kaori
    Asano, Hiroki
    Nakazawa, Yuichiro
    Kuroki, Nobutaka
    Numa, Masahiro
    Maida, Osamu
    Kanemoto, Daisuke
    Hirose, Tetsuya
    IEICE ELECTRONICS EXPRESS, 2020, 17 (11):
  • [23] Design of Efficient Rectifier for Low-Power Wireless Energy Harvesting at 2.45 GHz
    Lee, Tag Jong
    Patil, Pavan
    Hu, Chiao Yi
    Rajabi, Mohammad
    Farsi, Saeed
    Schreurs, Dominique M. M. -P.
    2015 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2015, : 47 - 49
  • [24] Variation Estimation and Compensation Technique in Scaled LTPS TFT Circuits for Low-Power Low-Cost Applications
    Li, Jing
    Kang, Kunhyuk
    Roy, Kaushik
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2009, 28 (01) : 46 - 59
  • [25] Design and analysis of high-performance double-gate ZnO nano-structured thin-film ISFET for pH sensing applications
    Srikanya, Dasari
    Bhat, Aasif Mohammad
    Sahu, Chitrakant
    MICROELECTRONICS JOURNAL, 2023, 137
  • [26] Proposal of a 2.4 GHz Rectifier With Temperature Range Trimming for Low-Power RF Energy Harvesting
    Diniz, Renan
    Da Silva, Vinicius Santana
    da Paz, Humberto Pereira
    Trevisoli, Renan
    Casella, Ivan Roberto Santana
    Capovilla, Carlos Eduardo
    IEEE ACCESS, 2024, 12 : 167278 - 167287
  • [27] Design of Dual-Band Rectifier Circuit for RF Energy Harvesting Using Double-Gate Graphene Nanoribbon (GNR) Vertical Tunnel FET
    Zohmingliana
    Choudhuri, Bijit
    Bhowmick, Brinda
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 167 - 172
  • [28] Simulation and performance study of low-power magnetron sputtered ZnO methane sensor
    Li J.-M.
    Jiao M.-Z.
    Qian C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (06): : 987 - 994
  • [29] A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants
    Hosseini, Seyed Morteza
    Maghami, Mohammad Hossein
    Amiri, Parviz
    Sawan, Mohamad
    ELECTRONICS, 2023, 12 (14)
  • [30] A low-power gate driver integrated by IZO-TFTs employing single negative power source
    Chen, Jun-Wei
    Hu, Yu-Feng
    Chen, Zhuo-Jia
    Zhou, Lei
    Wu, Wei-Jing
    Zou, Jian-Hua
    Xu, Miao
    Wang, Lei
    Peng, Jun-Biao
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (06)