On the Equivalence of Euler-Lagrange and Noether Equations

被引:1
作者
Faliagas, A. C. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Calculus of variations; Noether; Euler-lagrange; Equivalence; Nonlinear poisson; Conservation laws; Energy-momentum tensor; Stress tensor;
D O I
10.1007/s11040-016-9203-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, under the condition of nontriviality, the Euler-Lagrange and Noether equations are equivalent for a general class of scalar variational problems. Examples are position independent Lagrangians, Lagrangians of p-Laplacian type, and Lagrangians leading to nonlinear Poisson equations. As applications we prove certain propositions concerning the nonlinear Poisson equation and its generalisations, and the equivalence of admissible and inner variations for the systems under consideration.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 11 条
[1]   THE STRESS-ENERGY TENSOR AND POHOZAEV'S IDENTITY FOR SYSTEMS [J].
Alikakos, N. D. ;
Faliagas, A. C. .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) :433-439
[2]   SOME BASIC FACTS ON THE SYSTEM Δu - Wu(u) = 0 [J].
Alikakos, Nicholas D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (01) :153-162
[3]  
[Anonymous], 1969, Treatise of analysis
[4]  
Bjorken JD., 1964, Relativistic Quantum Mechanics, International series in pure and applied physics
[5]   A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES [J].
CAFFARELLI, L ;
GAROFALO, N ;
SEGALA, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1457-1473
[6]   COMMENTS ON NONLINEAR WAVE EQUATIONS AS MODELS FOR ELEMENTARY PARTICLES [J].
DERRICK, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) :1252-&
[7]  
Faliagas A., 2012, THESIS U ATHENS
[8]  
Feynman R. P., 1963, The Feynman Lectures in Physics., V1
[9]  
Giaquinta M., 2010, GRUNDLEHREN MATH WIS
[10]  
Noether E., 2005, ARXIV0503066V1