Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation

被引:40
作者
Lee, H. K. [1 ]
Song, Y. M. [2 ]
Lee, Y. T. [2 ]
Yu, J. S. [1 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 446701, South Korea
[2] Gwangju Inst Sci & Technol, Dept Informat & Commun, Gwangiu 500712, South Korea
关键词
VCSELs; InGaAs/GaAs MQWs; Thermal analysis; Thermal resistance; SURFACE-EMITTING LASERS; QUANTUM CASCADE LASERS; BOUNDARY RESISTANCE; CONDUCTIVITY; PARAMETERS; WELL;
D O I
10.1016/j.sse.2009.06.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The asymmetric intracavity-contacted oxide-aperture vertical-cavity surface-emitting lasers (VCSELs), operating at lambda similar to 980 nm, with different oxide aperture diameters were fabricated and their thermal analysis was theoretically performed using a three-dimensional cylindrical heat dissipation model. The heat flux, temperature profile, and thermal resistance (R-th) of the devices were investigated by incorporating heat source values, obtained from experimentally measured results, into the thermal simulation. For the fabricated VCSELs with benzocyclobutene passivation layer, the R-th decreased from 4612 K/W to 1130 K/W as the oxide aperture diameter (D-a) increased from 8 mu m to 16 mu m and it increased significantly below 8 mu m. The use of the thin substrate and the passivation layer with a high conductivity enhances the heat dissipation, allowing for a low R-th. Furthermore, thick Au layers on contact: pads and top DBR in intracavity-contacted VCSEL structures help increase heat removal from the active region. For D-a = 8 mu m and 16 mu m, the VCSELs with SiNx passivation layer, 5 mu m thick extra Au layer, and 100 mu m thick substrate indicate R-th = 3050 K/W and 778 K/W, respectively, leading to an improvement by >30% compared to the fabricated devices. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1086 / 1091
页数:6
相关论文
共 25 条
[11]   Single-mode 1.3-μm photonic crystal vertical-cavity surface-emitting laser [J].
Leisher, Paul O. ;
Danner, Aaron J. ;
Choquette, Kent D. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (17-20) :2156-2158
[12]  
Lysak VV, 2006, J OPTOELECTRON ADV M, V8, P355
[13]   Thermal impedance of VCSEL's with AlOx-GaAs DBR's [J].
MacDougal, MH ;
Geske, J ;
Lin, CK ;
Bond, AE ;
Dapkus, PD .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10 (01) :15-17
[14]   Inclusion of thermal boundary resistance in the simulation of high-power 980 nm ridge waveguide lasers [J].
Mackenzie, R. ;
Lim, J. J. ;
Bull, S. ;
Sujecki, S. ;
Larkins, E. C. .
OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (5-6) :373-377
[15]   Finite difference analysis of thermal characteristics of CW operation 850 nm lateral current injection and implant-apertured VCSEL with flip-chip bond design [J].
Mehandru, R ;
Dang, G ;
Kim, S ;
Ren, F ;
Hobson, WS ;
Lopata, J ;
Pearton, SJ ;
Chang, W ;
Shen, H .
SOLID-STATE ELECTRONICS, 2002, 46 (05) :699-704
[16]   THERMAL-CONDUCTIVITY OF BINARY, TERNARY, AND QUATERNARY III-V COMPOUNDS [J].
NAKWASKI, W .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (01) :159-166
[17]  
OSINSKI M, 1993, ELECTRON LETT, V29, P1015, DOI 10.1049/el:19930677
[18]   Thermal analysis of thin-film vertical-cavity surface-emitting lasers using finite element method [J].
Ouchi, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (08) :5181-5186
[19]   Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers [J].
Piskorski, Lukasz ;
Sarzala, Robert P. ;
Nakwaski, Wlodzimierz .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (06) :593-600
[20]  
QUINTANA JA, 2008, J APPL PHYS, V104, P74903