Controlling dendrite propagation in solid-state batteries with engineered stress

被引:100
作者
Fincher, Cole D. [1 ]
Athanasiou, Christos E. [2 ,3 ]
Gilgenbach, Colin [1 ]
Wang, Michael [1 ]
Sheldon, Brian W. [2 ]
Carter, W. Craig [1 ]
Chiang, Yet-Ming [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Brown Univ, Sch Engn, Providence, RI USA
[3] MIT, Ctr Bits & Atoms, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
ELASTIC PROPERTIES; METAL PENETRATION; HIGH-ENERGY; ELECTROLYTES; CONDUCTIVITY; TEMPERATURE; FRACTURE; LI7LA3ZR2O12; STABILITY; TOUGHNESS;
D O I
10.1016/j.joule.2022.10.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-dendrite penetration is a mode of electrolyte failure that threatens the viability of metal-anode-based solid-state batteries. Whether dendrites are driven by mechanical failure or electrochem-ical degradation of solid electrolytes remains an open question. If in-ternal mechanical forces drive failure, superimposing a compressive load that counters internal stress may mitigate dendrite penetra-tion. Here, we investigate this hypothesis by dynamically applying mechanical loads to growing dendrites in Li6.6La3Zr1.6Ta0.4O12 solid electrolytes. Operando microscopy reveals marked deflection in the dendrite growth trajectory at the onset of compressive loading. For sufficient loading, this deflection averts cell failure. Using fracture mechanics, we quantify the impact of stack pressure and in-plane stresses on dendrite trajectory, chart the residual stresses required to prevent short-circuit failure, and propose design approaches to achieve such stresses. For the materials studied here, we show that dendrite propagation is dictated by electrolyte fracture, with electronic leakage playing a negligible role.
引用
收藏
页码:2794 / 2809
页数:17
相关论文
共 50 条
[1]   Review Article: Stress in thin films and coatings: Current status, challenges, and prospects [J].
Abadias, Gregory ;
Chason, Eric ;
Keckes, Jozef ;
Sebastiani, Marco ;
Thompson, Gregory B. ;
Barthel, Etienne ;
Doll, Gary L. ;
Murray, Conal E. ;
Stoessel, Chris H. ;
Martinu, Ludvik .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]  
Anderson T.L., 2017, FRACTURE MECH FUNDAM
[4]   BREAKDOWN OF BETA-ALUMINA CERAMIC ELECTROLYTE [J].
ARMSTRONG, RD ;
DICKINSO.T ;
TURNER, J .
ELECTROCHIMICA ACTA, 1974, 19 (05) :187-192
[5]   Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries [J].
Athanasiou, Christos E. ;
Liu, Xing ;
Jin, Mok Yun ;
Nimon, Eugene ;
Visco, Steve ;
Lee, Cholho ;
Park, Myounggu ;
Yun, Junnyeong ;
Padture, Nitin P. ;
Gao, Huajian ;
Sheldon, Brian W. .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04)
[6]   High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide [J].
Athanasiou, Christos E. ;
Jin, Mok Yun ;
Ramirez, Cristina ;
Padture, Nitin P. ;
Sheldon, Brian W. .
MATTER, 2020, 3 (01) :212-229
[7]   CRACKING OF THIN BONDED FILMS IN RESIDUAL TENSION [J].
BEUTH, JL .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1992, 29 (13) :1657-1675
[8]   Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC) [J].
Cheng, Eric Jianfeng ;
Hong, Kicheol ;
Taylor, Nathan John ;
Choe, Heeman ;
Wolfenstine, Jeff ;
Sakamoto, Jeff .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (09) :3213-3217
[9]   SLIGHTLY CURVED OR KINKED CRACKS [J].
COTTERELL, B ;
RICE, JR .
INTERNATIONAL JOURNAL OF FRACTURE, 1980, 16 (02) :155-169
[10]   SLOW DEGRADATION AND ELECTRON CONDUCTION IN SODIUM-BETA-ALUMINAS [J].
DEJONGHE, LC ;
FELDMAN, L ;
BEUCHELE, A .
JOURNAL OF MATERIALS SCIENCE, 1981, 16 (03) :780-786